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ABSTRACT
In today’s data-driven world, the deluge of information from dig-
itized systems poses significant processing challenges. Synopses
of data offer a compelling solution by providing effective ways to
process, structure, and analyze high-volume data streams without
the computational burden of logging every event. These compact
representations serve not only as analysis results themselves, but
also as "distilled" input for downstream data mining and machine
learning applications in high-rate data pipelines. Our research ad-
dresses the challenge of maintaining these synopses efficiently in
continuous/parallel environments. Specifically, we target algorith-
mic constructs and data structures that support concurrent updates
and queries across varying window frames while enabling merge-
able summaries through state partitioning. By bridging the gap
between data summarization techniques and parallel processing,
we aim to overcome the limitations of traditional sequential ap-
proaches that struggle with modern data velocities.
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1 PROBLEM STATEMENT
With the growing interest in digitalization and its associated ecosys-
tems, the need to store, process, index, and gain valuable insights
from data is imperative. However, given the increasing volume,
velocity, and variety of data that must be generated and processed,
two approaches have been proposed to address this issue: data
summarization (or synopsis) and concurrent/parallel Processing.

The first approach, data summarization, is based on the obser-
vation that big data is often very large but also often ephemeral,
with the value brought by different pieces of data being uneven.
Instead of needing to store, process, and index the entire amount
of data, we can extract useful information from massive data sets
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into synopses data structures, typically requiring much less space
and computation. Examples include simple functions such as min,
max, average, or median, and more complex ones such as statistics
about the frequencies of encountered elements and heavy hitters.
During this process, some information may be lost compared to
the original amount of data. Therefore, depending on the prob-
lem, the processed data may exist in the form of probabilistic data
structures. This means the calculation results from these compact
probabilistic data structures can return an approximate result with
a bounded difference from the accurate answer and can allow a
small probability of deviation from the bounded guarantee.

In another approach, researchers believe that we need to make
fuller use of the resources we have, especially parallel hardware
that has become popular with today’s commodity devices. This is
necessary in an era when Moore’s law is gradually ending, as we
can no longer rely on the processing speed of hardware increasing
exponentially every couple of years. However, the speed-up due to
concurrency and parallelism will not come in straight-forward, for-
mal definitions and reasons are described rigorously in Amdahl’s
law. There are many things that need to be carefully designed
for a concurrent system. These include work partitioning, concur-
rent/parallel access control, resource partitioning and replication,
interacting with hardware, languages and environments, relaxed
semantics, etc. Proving an effective concurrent system is not just
about increased throughput or reduced latency experimentally; it
also needs to ensure its safety and liveness properties, often referred
to as correctness and progress.

Although the above two approaches are different, they are not
mutually exclusive. This means that we can apply both methods
simultaneously. Thus, the effective combination of both methods,
known as concurrent data summarization, is expected to bring a
new perspective, possibilities to big data processing e.g., allowing
concurrent insertions and queries to happen which is essential to
reduce latency in many critical systems or achieve good scalability.

2 RELATEDWORK
2.1 On Data Summarization (Synopses)
Comprehensive overviews on synopses over data sets and data
streams can be found in [6, 9, 18], where knownmethods for summa-
rizing streams using sampling, histograms, wavelets, and sketches
are explained in depth, while the needs and technical challenges
associated with parallelization and distributed settings are empha-
sized as demanding research directions. In the following paragraphs,
we give a brief outline of highlights on data summarization and
associated trends.

Sampling: Sampling is considered one of the most fundamental
and widely used techniques for data summarization, with a long
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history. The core concept involves random selection of items of a
stream (or a set), followed possibly by statistical modeling. Sampling
is indeed a powerful tool for data analytics, but in some cases
can perform not as intended, depending on the purposes of the
task or the data distribution, especially when the data is highly
skewed [6]. As a result, alternative methods for data summarization,
such as histograms, wavelets, and sketches, continue to develop
concurrently with sampling.

Histograms: Histograms, first introduced by Karl Pearson [24],
represent the distribution of data sets, displaying the frequency or
probability of different values within predefined intervals or "bins".
They give a rough sense of the density of the underlying distribution
of the data and are often used for density estimation. Such data
structures are used widely, especially for data visualization, as they
are intuitive means for identifying patterns and trends in the data.
Histograms have also been studied in the database literature for
many years as a query-answering technique [5, 10, 25].

Wavelets: A wavelet transformation decomposes the data set
into a coarse overall approximation together with detailed coeffi-
cients hierarchically. Furthermore, wavelet transforms are generally
simple linear transformations, thus allowing for efficient synopsis-
construction algorithms. The space for research related to wavelets
applied in databases and data streams attracts significant inter-
est [7, 8, 20, 21] given the promising application potential, as well
as the scientific challenges.

Sketches: A sketch is a type of synopsis that is a linear transfor-
mation of input; as such, it can be updated flexibly and efficiently
to capture certain properties of a data set or data stream, such as
frequencies of elements observed, or estimation of joints or self
joins and support of range queries. It features highly desirable
properties for high-rate stream processing such as speed, space-
efficiency, delete-compliance, and especially mergeability. The latter
also makes it easy to optimize, parallelize sketch updates, and prove
correctness. Compared to sampling or histograms, the history of
sketches is relatively young, but because of their useful properties,
they are applied extensively to various fields and use-cases.

From 2010, with the fast development of multi-core computing
devices and distributed systems, alongside the emergence of interest
and progress in ML, new research directions and applications of
sketches in those fields have been in focus, motivated by the fast,
compact, and mergeable nature of sketches. These will be discussed
in subsequent parts of this section.

2.2 On Concurrent Data Summarization
As data volumes and rates continue to grow while applications
evolve, there is an increasing need for solutions that go beyond
sequential processing capabilities, posing challenges on both scal-
able parallel performance and support for concurrent queries and up-
dates [9]. While there is some recent work realizing such needs [27,
29, 33], parallelizing summaries has focused mainly on parallelizing
inserts (cf. [19, 37]), with only a few recent work [15, 28, 32], to the
best of our knowledge, on concurrent queries and inserts.

Concurrency implies the need to deal with consistency and
progress properties when accessing shared data, i.e. when con-
sidering shared data objects. Sequential consistency [17], and lin-
earizability [14] are safety properties to characterize consistency

of concurrent object accesses, equivalent to sequential executions.
They guarantee that each operation appears as if it takes place in
an atomic instance of time, with effects equivalent to the object’s
sequential specification. Linearizability requires additionally that
each such atomic time instance (linearization point) falls in the
duration of the actual operation it corresponds to. This implies
that linearizable objects’ executions can combine and the resulting
execution is still linearizable [14]. There exist other consistency
property formulations that are concurrency-aware and allow for
relaxed conditions, e.g., regularity and quiescence consistency, which
distinguish their requirements, depending on whether operations
act concurrently on an object or not [13, 22].

Recent works, including [3, 12, 22, 30] and references therein,
propose relaxing linearizability and sequential consistency require-
ments by, roughly speaking, allowing equivalence to controlled
perturbations of sequential executions instead of strictly sequen-
tial executions with the same operations, trading off timeliness
with consistency guarantees. In the context of leveraging the afore-
mentioned consistency notions for summaries, [26] proposed Inter-
mediate Value Linearizability (IVL) as a correctness criterion, that
relaxes linearizability to allow a query to return intermediate values
of concurrent updates of a (monotonically increasing) summary
data structure, showing that concurrent IVL implementations of
(𝜖, 𝛿)-bounded approximations (i.e. with an error of at most 𝜖 with
probability at least 1 − 𝛿), such as the Count-Min sketch, are them-
selves (𝜖, 𝛿)-bounded. In a similar spirit, the Delegation sketch, pro-
posed in [34], is constructed to satisfy quiescent consistency while
keeping competitiveness regarding the (𝜖, 𝛿)-bound compared to
baseline parallelization schemes, due to its state partitioning.

These consistency models relate closely to the notion of deter-
minism in stream processing, which targets equivalence to sequen-
tial processing of streaming data ordered by event-time cf [4, 11]
and references therein). Relaxations of strict determinism allow
bounded deviations (cf [2, 16, 35, 36] and references therein), which
proves particularly useful when data arrives in arbitrary order (aka
cash-register model).

For distributed environments, the concept of mergeable sum-
maries becomes essential, extending beyond linear sketches to en-
able combining partial results from different processing nodes [1, 23,
31]. This mergeability facilitates both distribution and concurrency,
opening interesting research questions about various synopsis types
that permit merging in some form.

3 APPROACH
We approach the problem of concurrent data summarization from
multiple complementary directions:

Summaries for Massive Data Streams: Data-stream processing
is all the more important in the evolving landscape of digitized,
cyber-physical systems, in order to generate continuous streams of
information useful for improving the underlying physical systems,
e.g., electricity grids, vehicular systems, production systems, and
even data networks. It is often desirable to transform the data into
forms that facilitate further processing, e.g., for the detection of
anomalies, the identification of similarities for optimization, and
various other datamining andML types of analysis. Data summaries
of the type that we mentioned in the previous subsections have
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been shown to be useful for such purposes. Furthermore, different
transformations are useful at the same time, e.g., for supporting
range queries, combining different streaming operators, such as
aggregation and filtering. Hence, multiple summaries may need to
be maintained in parallel. How to design efficient data structures
that can be updated and queried in multiple ways, concurrently is
an active research problem. Also, how to maintain synopses in
the sliding window model (i.e., over bounded subsets instead of the
whole stream) represents a relatively unexplored yet promising
research direction, with limited existing work.

Parallelism and Concurrency for Summaries: As mentioned in
an earlier paragraph, common correctness criteria for concurrent
object constructions are linearizability and sequential consistency,
which guarantee that all operations’ effects are observed in total
order, consistent with the target’s sequential specification, while
for concurrency-aware semantics notions such as regularity, quies-
cent consistency, eventual consistency describe possible guarantees
in presence of concurrent operations on the data [13]. Since data
summaries (synopses, sketches, as described earlier in this docu-
ment) provide results with approximation guarantees (semantic
relaxation), it is possible to consider similarly regarding consistency
requirements in the presence of concurrent updates and queries.
Our research will explore how the inherent approximation prop-
erties of data synopses can be leveraged to design more efficient
concurrent operations. Beyond correctness properties, we will de-
velop techniques for effective work partitioning and state sharding
that minimize contention in high-throughput scenarios while pre-
serving summary accuracy. This includes investigating lock-free
and wait-free data structure implementations tailored specifically
for summary data types, as well as exploring hardware-aware op-
timizations such as cache-aware data layouts and SIMD instruc-
tion utilization. Importantly, our research targets parallelization
approaches that can be applied across entire algorithm categories
(e.g., heavy hitter detection, quantile estimation, wavelet trans-
forms), allowing existing algorithms and systems to benefit from
concurrency and parallelism without requiring complete redesigns
or specialized implementations.

ML for Summaries and Summaries for ML:Wewill investigate the
bidirectional relationship between machine learning (ML) and data
summarization. In one direction, data summarization techniques
can transform high-dimensional data into lower dimensions, re-
ducing communication costs and making training and inference
processes faster. Another example is clustering algorithms on large
datasets do not need towork on the full dataset. They can operate on
data summaries or micro-clusters which represent groups of points
that are extremely similar to each other and would fall into the same
cluster regardless of the selected configuration and distance metric.
In the other direction, ML can enhance data summarization by ex-
ploiting patterns found in the input data to improve the accuracy
of results. Our research will focus on developing techniques that
integrate these two approaches, particularly in concurrent environ-
ments where traditional sequential approaches face limitations.

4 EVALUATION PLAN
Our evaluation strategy is to assess the effectiveness of our concur-
rent data summarization techniques across multiple dimensions,

including diverse hardware configurations, shared-memory multi-
core systems, distributed clusters, and heterogeneous computing
platforms, to demonstrate adaptability and scalability characteris-
tics. To promote adoption and practical utility, we plan to integrate
our implementations into established open-source frameworks,
such as Apache Flink, Apache Spark Streaming, and the Apache
DataSketch project. Many performance metrics will be taken into
account, such as throughput, latency, accuracy, and resource uti-
lization (memory footprint, cache behavior). We will benchmark
against both synthetic workloads with varying skewness and real-
world datasets from public repositories. Importantly, we will vali-
date our approaches through collaborations with industrial partners.
This industrial validation will help guide our research priorities to-
ward the most impactful aspects of concurrent data summarization
and demonstrate the real-world utility of our proposed methods.

5 CONCLUSIONS AND REFLECTIONS
In this paper, we have outlined a comprehensive approach to con-
current data summarization, targeting the growing challenges of
processing high-velocity, high-volume data streams. By bridging
techniques from data summarization and parallel processing, we
aim to develop algorithmic constructs and data structures that
support efficient concurrent updates and queries across varying
window frames while maintaining accuracy guarantees.

Our initial research has focused on the fundamental problem of
heavy hitter detection in data streams, resulting in both an adaptive
sequential algorithm with strong generalization properties and a
framework for parallelizing existing heavy hitter algorithms. These
contributions provide a solid foundation for our ongoing work
on broader synopsis types including wavelets and quantiles, as
well as advanced operational models such as sliding windows and
out-of-order data processing.

Despite the clear benefits, adoption of advanced data summa-
rization techniques remains primarily limited to large technology
companies with specialized knowledge. We believe this represents
both a challenge and an opportunity. By contributing accessible im-
plementations, integrating with popular open-source frameworks,
and demonstrating concrete performance improvements in real-
world scenarios, we can help bridge the gap between theoretical
advances and practical applications.

Looking forward, we will continue to explore the interplay be-
tween consistency models, accuracy guarantees, and performance
optimizations in concurrent environments. As digitized systems
become increasingly ubiquitous, we expect the demand for efficient,
continuous data processing to grow, making data summarization,
especially its concurrent/parallel variants essential components of
future data infrastructure.
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