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Abstract

End-to-end deep learning systems have become central to autonomous
driving, outperforming modular architectures in many benchmarks.
However, their black-box nature limits transparency and explain-
ability, which are key requirements in safety-critical environments.
Recently, Vision Language Models (VLMs) have emerged as a promis-
ing solution, offering natural language explanations of driving de-
cisions. However, their high computational and memory demands
present major challenges for real-time deployment in vehicles. This
work explores hardware-oriented solutions to enable VLMs in
autonomous driving, with a focus on energy efficiency, latency,
and scalability. It investigates accelerator technologies capable of
supporting VLM deployment under strict automotive constraints.
The goal is to assess and guide the development of hardware plat-
forms that can make explainable Al feasible for next-generation
autonomous vehicles.
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1 Problem Statement

Autonomous driving (AD) has seen rapid progress in recent years,
largely driven by advances in Artificial Intelligence (AI). Two pri-
mary paradigms have emerged in this space: modular pipelines
and end-to-end learning approaches [14]. Modular systems break
down the driving task into several stages like perception, planning,
and control, offering better explainability and easier debugging.
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Figure 1: Accelerator requirements overview

However, they often suffer from performance bottlenecks and error
accumulation across stages [12]. In contrast, end-to-end models
use deep neural networks to directly map sensor inputs to driving
commands. These models have shown strong performance in com-
plex scenarios, but their black-box nature limits transparency, an
essential feature for safety-critical applications such as AD.

A promising direction for improving the explainability of end-
to-end models in AD is the use of Vision Language Models (VLMs).
These models combine visual perception with natural language rea-
soning, enabling them to produce human-readable explanations for
their driving decisions. Figure 2 shows a general VLM architecture,
which consists of a vision encoder whose output is mapped by a
multimodal projector into embeddings that, together with the text
prompt, are fed into an LLM to generate a text answer.

This added explainability makes them especially appealing for
safety-critical systems, where understanding the decision-making
process is as important as achieving high performance.

VLMs have already demonstrated strong results in controlled
environments. For example, CarLLaVA [9], a VLM designed for
autonomous driving, currently ranks among the top-performing
systems on the CARLA Leaderboard [2], showcasing the poten-
tial of VLMs to lead in both performance and explainability when
evaluated in high-fidelity simulators like CARLA [4].

However, this capability comes at a significant computational
cost. VLMs are resource-intensive, requiring substantial compute
and memory to process multimodal inputs and generate meaningful
outputs. These demands pose serious challenges for real-time in-
ference on embedded automotive platforms [8], where constraints
on latency, energy consumption, power, and hardware capacity are
much tighter than in cloud or simulation environments, as shown
in Figure 1.

This research aims to address this gap by exploring hardware-
level solutions for running VLMs efficiently in autonomous driving
settings.
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Figure 2: General VLM architecture

2 State of the Art

Optimizing the execution of LLMs and VLMs is an active and fast-
moving area of research. The focus of this research is to identify
hardware-level strategies that enable the practical deployment of
VLMs in autonomous vehicles.

At present, there is no established state-of-the-art hardware
architecture specifically designed for VLMs, either in general or
within the context of autonomous driving. This is probably because
most VLMs adopt a vision encoder whose structure is similar in
complexity to the language model backend, inheriting many of the
same bottlenecks as traditional LLMs. As a result, most deploy-
ment efforts rely on accelerators originally optimized for generic
LLMs, which may not meet the unique demands of vision-language
reasoning under real-time constraints.

It is important to note that optimizing VLMs presents a different
set of challenges compared to other models for AD like Transfuser
[3] or Interfuser [10]. VLMs typically involve larger model sizes
and significantly higher computational loads due to the language
reasoning component and complex cross-modal interactions. As
shown in Table 1, VLMs exhibit a notably higher number of param-
eters and operations, justifying the need for dedicated hardware
exploration and tailored acceleration strategies.

Existing hardware accelerators for LLMs fall into several cate-
gories [7]:

e GPUs are the dominant platform due to their high paral-
lelism, support for mixed-precision arithmetic, and robust
software ecosystems. However, they often fail to meet the
energy requirements of embedded automotive use cases.

o FPGAs offer reconfigurability and improved energy effi-
ciency. Solutions like FlexRun [5] demonstrate the viability
of LLM inference on custom pipelines with quantized oper-
ators, and include comparisons against models like GPT2.
However, their performance on VLMs remains largely unex-
plored.

o ASICs are increasingly used in automotive applications for
their ability to deliver dedicated acceleration for specific
workloads. One example is Hailo [1], which offers ASIC-
based solutions for tasks such as ADAS and perception. How-
ever, these systems are not currently designed to handle the
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Table 1: Comparison of VLM and end-to-end models in terms
of complexity and explainability.

Model Parameters MACs Explainability
Transfuser ++ + X
Interfuser + + X
VLLMs e+ FRFE v

GPU FPGA

ASIC PIM

computational demands of fully autonomous driving or the
heavy multimodal inference required by VLMs.

e Processing-In-Memory (PIM) architectures are gaining
attention as a promising direction for future deployment.
They reduce data movement by performing computation
close to memory, improving energy efficiency for large-scale
models. For example, TransPIM [15] demonstrates the po-
tential of combining PIM and Near-Memory Computing to
significantly reduce data movement and improve efficiency
in large model inference. However, such approaches have
not yet been tested in the context of autonomous driving,
and their suitability for real-time VLM workloads in this
domain remains an open question.

In summary, the field lacks a clear reference architecture for
VLM deployment, particularly in constrained environments like
autonomous vehicles. As highlighted in Table 2, no existing ac-
celerator type simultaneously satisfies all the key requirements,
and proven automotive applicability. This research aims to explore
and evaluate hardware accelerators—including conventional and
emerging technologies—capable of meeting the latency, power, and
accuracy demands of VLMs, while remaining scalable and cost-
effective for future real-world integration.

3 Methodology

This work uses a hardware-focused methodology to understand
how VLMs behave under the strict real-time and energy constraints
of autonomous driving. The main goal is to collect insights that
will guide the design of a custom hardware accelerator suited for
running VLMs efficiently in this setting. By identifying where cur-
rent models and hardware struggle — such as high latency, memory
bottlenecks, or energy usage — we can define what the accelerator
needs to handle.

3.1 Layer-Wise Analysis

To optimize VLMs for real-time autonomous driving, it is essential
to understand which parts of the model contribute most to com-
putational load and latency. A layer-wise analysis enables this by
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Table 2: Comparison of accelerator types across key characteristics relevant to VLM deployment in AD.

Accelerator Reconfigurable Energy Efficient VLM Ready Automotive Proven
GPU X X v X
FPGA v v X X
ASIC X v X X
PIM X v X X

breaking down the model into individual components and identi-
fying “hot points” — layers or blocks that are expensive in terms
of computation, memory, or energy usage. This analysis supports
targeted optimizations where they will have the highest impact.
Specifically, we measure:

e FLOPs and parameter counts per layer to assess compute
demand and memory storage needs. FLOPs reveal where
peak compute occurs, while parameter counts reflect the
model’s memory footprint—critical for fitting models on
memory-constrained devices.

o Separate profiling of the visual encoder and language
model components to highlight key differences in latency,
compute intensity, and memory usage. This helps determine
which part is the primary performance bottleneck and guides
hardware-aware optimizations.

This granular analysis helps prioritize which layers or compo-
nents are best suited for approximation, fusion, or acceleration, and
informs targeted hardware optimizations.

3.2 Hardware Profiling and Roofline Modeling

To systematically quantify hardware limitations, we employ roofline
modeling [6, 13], a method to evaluate practical performance
bounds of hardware platforms. The roofline model helps distin-
guish whether a given model or layer is:
e Compute-bound — limited by peak FLOP/s of the hardware,
or
e Memory-bound — limited by memory bandwidth and data
movement overheads.

By plotting operational intensity against achieved throughput,
we can assess how efficiently the hardware is utilized. This modeling
will be applied across multiple devices (e.g., GPUs, edge accelera-
tors) to evaluate:

e Hardware utilization gaps—how far actual performance is
from the roofline.

e The impact of memory access patterns, particularly in at-
tention mechanisms and vision transformers, on bandwidth
constraints.

Roofline modeling provides the foundation for justifying archi-
tectural decisions such as operator fusion, tiling, memory layout
transformations, and deployment on specialized hardware.

3.3 Hardware Design and Simulation

Based on profiling insights, this research will explore the design of
a custom accelerator tailored for VLM workloads under automotive
constraints. The focus is on minimizing latency and energy con-
sumption while supporting the memory and compute demands of
vision and language components.

Simulations will be used to evaluate key design metrics such
as area, performance, and energy efficiency. Particular attention
will be given to memory hierarchies, data movement, and the map-
ping of compute-intensive operations like attention and matrix
multiplications. The goal is to identify architectural features that
make accelerators better suited for real-time VLM execution in
autonomous vehicles.

4 Research setting

Deploying VLMs for autonomous driving requires a tailored re-
search setup, significantly different from their traditional use in
general-purpose language or vision-language tasks. This section
outlines the specific constraints and considerations involved.

4.1 Real-Time Inference Constraints

Autonomous driving systems must operate in real time, where
delays can compromise safety and performance. To meet these
demands:

e Batch size must be fixed to 1, reducing latency by processing
data frame-by-frame.
o A high frame rate is essential. Industrial systems (e.g., Tesla’s)

reportedly support up to 2030 fps [11], setting a high-performance

reference.
e The system must support low-latency inference, compatible
with the control loop of the vehicle.

4.2 Structured and Bounded Input/Output

Unlike open-ended applications of LLMs, this setting requires strict
control over token usage. Input tokens consist of:

o A visual embedding (from camera image)

o Textual metadata (e.g., current speed, steering angle).

e A prompt requesting a concise explanation for the driving
decision.

Output is expected to be limited in length compared to general-
purpose VLM usage, focusing on concise explanations that effec-
tively describe the driving scene.

This structured format ensures predictable memory and compute
requirements, facilitating system-level optimization.

4.3 Hardware and Energy Considerations

Since the model runs on vehicle-embedded hardware, additional
constraints apply:

e Energy efficiency is critical due to reliance on the vehicle’s
battery power.

e The hardware cost must be reasonable; accelerators should
not rival the cost of the car itself.
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This research will explore:

e How to adapt VLMs to this structured, real-time setting.

e Strategies to optimize latency, power, energy consumption,
and hardware cost.

o The feasibility of deploying explainable AI models in real-
world autonomous systems while preserving practical per-
formance standards.

5 Research approach

This research proposes a hardware-centered strategy to make VLMs
suitable for real-time autonomous driving. The central idea is to
retain the explainability and flexibility of these models while op-
timizing their execution for embedded, battery-powered systems
with strict latency and energy constraints.

The proposed solution focuses on adapting VLMs to operate
under a constrained inference setup: single-frame (batch size = 1)
processing, limited token budgets for both input (image + driving
state) and output (natural language explanation), and consistent,
bounded compute requirements. By limiting the input/output size
and analyzing inference patterns, the model’s performance can be
made more predictable and efficient.

To address the research questions, this approach investigates:

e Whether the high computational cost of VLMs can be re-
duced without sacrificing the explainability benefits.

e How the hardware architecture (e.g., memory bandwidth,
accelerator capabilities) influences real-time performance.

e Which optimizations (e.g. fixed token lengths) are most ef-
fective under real-world constraints.

The aim is not to refine models, but to enable their practical
deployment by aligning them with the requirements of embedded
automotive systems.

6 Evaluation plan

The evaluation will focus on the hardware feasibility and computa-
tional efficiency of deploying VLMs in real-time driving contexts.
The key goal is to determine whether these models can meet the
stringent latency, throughput, and energy constraints required for
deployment in embedded automotive systems.

Key Evaluation Criteria:

e Inference Latency: Measuring end-to-end latency for single-
frame processing (batch size = 1), across different hardware
configurations.

e Frame Rate (FPS): Targeting a frame rate that meets real-
time performance requirements in dynamic and safety-critical
environments.

e Energy Consumption: Quantifying power draw, with a
focus on feasibility for battery-powered embedded devices.

e Memory Bandwidth and Utilization: Profiling how effi-
ciently models utilize available memory.

e Hardware Cost and Practicality: Evaluating the trade-off
between performance gains and the physical/financial cost
of specialized accelerators—ensuring the compute platform
remains viable for in-vehicle deployment.

Model components (e.g., visual encoder vs. language decoder)
will be analyzed independently to identify computational hotspots
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and guide potential optimizations such as quantization, KV caching,
and token-length control.

7 Conclusions and reflections

This research is in its early stages, with the problem and methodol-
ogy defined but no experimental results yet. The focus is on enabling
real-time deployment of VLMs under strict hardware constraints,
balancing accuracy, latency, and energy use.

A major challenge lies in the rapid evolution of both models and
hardware, making adaptability a core requirement. The goal is to
develop strategies that not only work today but remain viable as
models grow in complexity. Despite the challenges, the potential
to combine explainability with real-time performance makes this a
promising and timely direction.
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