Integrating event stream processing in ML and analytics systems

Jingyu Liu
Supervised by Vincenzo Gulisano
Department of Computer Science and Engineering, Chalmers University of Technology and University of Gothenburg
Gothenburg, Sweden
jingyu.liu@chalmers.se

1 Problem Statement

With the context of stream processing, this PhD project delves
into strategies for efficiently integrating data analysis, model build-
ing, and serving within a cohesive and unified execution environ-
ment. The primary objective is to design a system for event stream
processing-driven data analytics applications that fosters seam-
less interconnection and collaborative optimization, particularly
for those that need to combine real-time stream processing with
iterative analytics. Such integration is essential to address the grow-
ing demands of model-driven applications, which often require the
ability to handle a wide spectrum of workloads. The proposed system
aims to enhance operational flexibility, improve resource utilization,
and maximize overall performance in data analytics workflows by
supporting incremental stream processing and bulk-iterative tasks.

This comprehensive approach seeks to bridge gaps between tra-
ditionally distinct phases of data analysis, paving the way for a more
dynamic and adaptive system. In simple terms, that is integrating
stream processing and auto-tuning tools in the same analytic system
to automate the relaxation trade-off aspects, such as applications’
performance or computational costs.

2 Preliminaries

2.1 Stream processing

A data stream (e.g., the sequence of position reports from a moving
car) is an unbounded sequence of tuples, sharing the same schema.
Edge devices, such as the aforementioned vehicles, typically contain
many embedded computers or sensors that function as edge devices,
and these edge devices can support data pipelines which transform
raw edge data into meaningful cloud-based insights within cloud-
based systems. And these pipelines often rely on data-intensive pro-
cessing paradigms like stream processing, where the applications
are defined as Directed Acyclic Graphs (DAGs) of operators and
run by Stream Processing Engines (SPEs), which control how these
pipelines are deployed (through the distribution and parallelization
of the operators in a DAG).

2.2 Reinforcement Learning

Reinforcement Learning (RL) is a foundational paradigm within the
field of machine learning that concerns the problem of learning to
make sequences of decisions through interaction with a dynamic
environment. Formally grounded in the framework of Markov De-
cision Processes (MDPs) [9], RL enables an Agent to learn optimal
behavior by receiving feedback in the form of scalar rewards, rather
than explicit supervision. The Agent’s objective is to reinforce itself
to discover a policy, a mapping from states to actions, that maximizes
the expected cumulative reward over time.

3 Related Work

Steam processing often faces the challenges of dynamically adapt-
ing to varying workloads, resource constraints, and performance
requirements. RL, inspired by biological learning, with an Agent that
interacts with an environment through trial and error to maximize
rewards from its actions and determine the optimal policy [12], has
been employed to automate diverse decision-making processes in
a range of applications, including operator scheduling [2, 3, 5, 6],
elasticity [1, 4, 10, 11, 13], and resource application [7, 8, 14], demon-
strating the versatility of RL involving the unique challenge of stream
processing environments.

3.1 Operator Scheduling

In Veith et al’s papers [2, 3], RL is employed to model operator
placement and reconfiguration tasks, automating decisions about
where query operators should be deployed across the cloud-to-edge
spectrum to optimize query execution by dynamically adapting to
changing network conditions and resource availability.

Similarly, Huang et al. [5] leverage RL to address the task place-
ment problem in heterogeneous stream processing environments,
specifically using Apache Flink, to dynamically adjust the placement
strategy for minimizing latency and maximizing resource utilization
by modeling task placement as a decision-making problem, and Li et
al. [6] propose a framework, guided by RL to simultaneously learn
from limited runtime statistics and optimize the scheduling process,
allowing the system to respond to real-time changes in workload
patterns and resource availability with the help of jointly optimizing
task scheduling and learning from operational feedback.

3.2 Elasticity

RL can also be applied in conjunction with elasticity control poli-
cies on heterogeneous resources to handle inherent uncertainties
in system parameters [11]. This integration enables the system to
dynamically adjust resource provisioning, ensuring efficient uti-
lization while adapting to fluctuating workloads and maintaining
operational stability. Building on these concepts, similar studies are
discussedin [1, 10], where the authors focus on dynamically adapting
application parallelism at runtime, emphasizing achieving a balance
between meeting predefined QoS requirements and addressing the
challenges posed by time-evolving workloads. Besides, the authors
explore techniques to optimize resource allocation while minimiz-
ing energy consumption and operational costs, demonstrating the
potential of RL to enhance system responsiveness and efficiency in
dynamic environments.

Extending and building on these ideas, researchers applied RL
within the Apache Spark SPE to guide auto-scaling decisions [13].
The proposed approach ensures that execution time constraints



are consistently met, even in the face of varying workload inten-
sities. By leveraging RL, the system can predict future resource
demands and scale computational resources accordingly, avoiding
over-provisioning while maintaining performance standards. Fur-
ther, traffic-aware scheduling mechanisms, such as the one presented
in [4], introduce Q-learning to optimize task distribution across
nodes in a heterogeneous cluster for both the workload character-
istics and the available resources of each node, ensuring efficient
utilization and minimizing bottlenecks.

3.3 Resource Allocation

From Ni et al’s work [7], the proposed RL model exploits transfer
learning in the context of resource allocation to apply knowledge
from previous environments to new tasks, thus enabling the deep
RL model to learn representations and generalize allocation policies
across different stream processing scenarios by employing a graph-
aware encoder-decoder framework. At the same time, Nie et al. [8]
tackle the complexity of resource allocation in large-scale diverse
stream processing graphs by using a coarsening strategy with the
help of an RL-based approach.

4 Research Questions

The goal of stream processing technologies is to gain useful informa-
tion from the massive and varied data stream. Since in this big data
era, all of the applications are streaming data into SPEs, like Apache
Flink, Spark Streaming, or Kafka Streams, and the system is racing to
keep up with the volume that is increasing exponentially. However,
optimizing such systems often involves making trade-offs among
multiple performance metrics. For instance, improving throughput
might come at the cost of reduced accuracy, or minimizing the latency
might require increased resource consumption. It is not always the
case that relaxing one metric (e.g., precision) necessarily increases
latency; rather, the optimization space involves carefully balancing
resource utilization, latency, accuracy, and throughput depending
on the application’s constraints and goals. The problem we want
to solve is how to find a trade-off between the application’s resource
utilization and performance within a certain constraint, and to solve
this, despite decades of research (see § 3), the dynamic adaptation
of these methods is quite limited, and we believe using live-tuning
tools, such as RL, can break those limitations.

5 Approach

In stream processing, operators are distinguished into stateless and
stateful. Stateless ones do not maintain a state that evolves with the
tuples they process, while stateful ones produce results from a state
dependent on one or more tuples. Since the stream is unbounded,
the state is limited to portions of time, usually called windows, main-
tained by Ws;,.— how long the duration for data captured in each
window, and Wy 4,,,— how often a new window starts, and users usu-
ally bind the scope of their analysis to windows containing the most
recent and relevant data. Although many aspects of a pipeline can be
optimized (e.g., operator placement, parallelism degree, or task sched-
uling), we target stateful operators, specifically Aggregates, to see
how to find a trade-off between the application’s resource utilization
and performance, because the Aggregates are central to summariza-
tion and often serve as bottlenecks under workload fluctuations. To

Jingyu Liu
Supervised by Vincenzo Gulisano

reach this trade-off, we consider using auto-tuning tools based on
Al and we think RL is one of the most mature and popular methods.

5.1 Memory compression through RL

Suppose there are two vehicles, one transmits data frequently, like
once per second, resulting in constantly evolving data windows
that are actively processed. In contrast, another vehicle sends data
infrequently, maybe once per day. While the total volume of data
from the second vehicle is small, the system still needs to maintain
its window in memory, even though these windows are rarely up-
dated or accessed, which leads to poorly used memory . In stream
processing environments, especially those deployed at the edge or
operating under resource constraints, memory usage is an important
factor. Operators responsible for maintaining state across many such
resources may encounter memory pressure when a large number of
inactive windows accumulate over time, which motivates the need
for on-demand memory management, particularly for rarely up-
dated streams. To address this, our idea is to compress the windows
for vehicles that send little data first, and decompress them later for
outputting the results or shifting the window.

We can investigate an algorithm that uses a single parameter to
control how much to compress, like a “knob”, to control the amount
of the window instances that should be compressed maintained by
the Aggregate, within a definition of compression ratio, ranging
from 0 — compressing all the windows, to 100 — no window is to be
compressed. As for how to adjust this “knob”, we introduce an Agent,
trained by a neural network, that acts on the live Aggregate.

The components of the whole framework could be the following:
(1) define an environment, mainly provided by the SPE; (2) find a
controller, as the communication tool between the environment and
the RL Agent; (3) construct RL Agent, with an appropriate training
algorithm embedded inside the Agent. In the first place, the environ-
ment gives an initial state (such as input rate, throughput, output
rate, latency, compression ratio, CPU consumption) to the Agent,
which usually relies on a neural network. Secondly, the Agent gives
a proper action (such as compress more, stay unchanged, compress
less) to interact with the environment to update the state while gen-
erating rewards, and then sends it back to the Agent to reinforce itself
to get as optimal actions as possible. This whole process looks like a
continuous iteration until it reaches the terminal state or condition.

5.2 Window-adaption through RL

While SPEs offer flexibility in defining application logic through op-
erator graphs, they often lack dynamic adaptability once deployed.
Among the various operators, their performance and resource usage
are directly influenced by how windows are defined and maintained.
In most SPEs, window parameters, Wy g,,and Ws;., are fixed at de-
ployment time, which may result in suboptimal performance under
dynamically changing workloads. For example, a large number of
fine-grained windows (e.g., with small Wy 4,,,and Wg;,,) can intro-
duce considerable computational and memory pressure in periods of
high input rate. Conversely, during low load periods, coarse-grained
windows may lead to under-utilization of available resources and
delayed output. This motivates us to explore adaptive window con-
figuration as a means to balance the trade-off between performance



Integrating event stream processing in ML and analytics systems

(e.g., latency and throughput) and resource utilization (e.g., memory
and CPU).

We can propose a mechanism that allows the Aggregate to dynam-
ically adjust its window configuration during runtime. Specifically,
the Aggregate switches between a pre-defined set of (Wagyn,Wsize)
pairs in response to changes in the SPE state. By enabling such dy-
namic reconfiguration, the Aggregate will better align its behavior
with the characteristics of the incoming data and the current system
load.

Similar to the approach in 5.1, we introduce a tunable “knob” that
determines how frequently the window configuration should be
changed. For example, when the “knob” is set to a low value, the
system is allowed to reconfigure more frequently, which may help
it respond quickly to workload changes but at the cost of increased
overhead. On the other hand, higher values result in less frequent
changes, reducing reconfiguration cost but potentially missing op-
portunities for optimization. To determine this “knob”, we can also
use RL, in which the RL Agent observes states from the environ-
ment, selects actions, such as larger/smaller Ws;e/Wa4yn, or keep
unchanged, to change the window configurations, and learns to
adapt its policy over time based on the observed reward, probably
defined in terms of system performance and resource consumption.

6 Evaluation Plan

We plan to evaluate our approach along several dimensions. First, we
will assess the performance of the SPE introduced by the Agent that is
activated to act on the live Aggregate through the changes in the dif-
ferent actions, using the stream processing usecases. We might also
need to design and evaluate a complementary usecase characterized
by significant variations in input rates and distributions to under-
stand how our approach performs under more extreme and varied
workload conditions. Beyond assessing the Agent’s ability to support
the relaxation of resource utilization and performance for the Aggre-
gate under study, we will investigate the scalability of the approach.

7 Conclusions and Reflections

This PhD project is situated within the broader vision of building
adaptive, intelligent stream processing systems that can respond
effectively to dynamic data and workloads. In particular, as modern
applications demand increasingly flexible and resource-efficient pro-
cessing pipelines, it becomes crucial to enable automatic trade-offs
between performance and resource usage.

In this work, we aim to take a focused step toward that goal by
designing and evaluating an RL-based Agent that dynamically ad-
justs the behavior of a live Aggregate by applying a given number
of actions while meeting a given latency threshold. We assessed
our solution with several baselines, showing the Agent will support
on-demand resource utilization for stream Aggregates.

Acknowledgments

Work supported by the Marie Sklodowska-Curie Doctoral Network
project RELAX-DN, funded by the European Union under Horizon
Europe 2021-2027 Framework Programme Grant Agreement number
101072456, Chalmers AoA Energy projects DEEP and INDEED, the

Swedish Energy Agency (SESBC) project TANDEM, the Wallenberg
Al Autonomous Systems and Software Program and Wallenberg

Initiative Materials for Sustainability project STRATIFIER.

References

[1] Valeria Cardellini, Francesco Lo Presti, Matteo Nardelli, and Gabriele Russo Russo.
2018. Auto-scaling in data stream processing applications: A model-based
reinforcement learning approach. In New Frontiers in Quantitative Methods in
Informatics: 7th Workshop, InfQ 2017, Venice, Italy, December 4, 2017, Revised
Selected Papers 7. Springer, 97-110.

[2] Alexandre da Silva Veith, Marcos Dias de Assuncao, and Laurent Lefevre. 2019.
Monte-carlo tree search and reinforcement learning for reconfiguring data stream
processing on edge computing. In 2019 31st International Symposium on Computer
Architecture and High Performance Computing (SBAC-PAD). IEEE, 48-55.

[3] Alexandre da Silva Veith, Felipe Rodrigo De Souza, Marcos Dias de Assuncao,
Laurent Lefévre, and Julio Cesar Santos Dos Anjos. 2019. Multi-objective rein-
forcement learning for reconfiguring data stream analytics on edge computing.
In proceedings of the 48th international conference on parallel processing. 1-10.

[4] Hamid Hadian, Mohammadreza Farrokh, Mohsen Sharifi, and Ali Jafari. 2023.
An elastic and traffic-aware scheduler for distributed data stream processing in
heterogeneous clusters. The Journal of Supercomputing 79, 1 (2023), 461-498.

[5] Xiao Huang, Yu Jiang, Hao Fan, Huayun Tang, Yiping Wang, Jin Jin, Hai Wan, and
Xibin Zhao. 2021. TATA: Throughput-aware task placement in heterogeneous
stream processing with deep reinforcement learning. In 2021 IEEE Intl Conf on
Parallel & Distributed Processing with Applications, Big Data & Cloud Computing,
Sustainable Computing & Communications, Social Computing & Networking
(ISPA/BDCloud/SocialCom/SustainCom). IEEE, 44-54.

[6] Teng Li, Zhiyuan Xu, Jian Tang, and Yanzhi Wang. 2018. Model-free control
for distributed stream data processing using deep reinforcement learning. arXiv
preprint arXiv:1803.01016 (2018).

[7] Xiang Ni, Jing Li, Mo Yu, Wang Zhou, and Kun-Lung Wu. 2020. Generalizable
resource allocation in stream processing via deep reinforcement learning. In
Proceedings of the AAAI conference on artificial intelligence, Vol. 34. 857-864.

[8] Lanshun Nie, Yuqi Qiu, Fei Meng, Mo Yu, and Jing Li. 2023. Generalizable
Reinforcement Learning-Based Coarsening Model for Resource Allocation over
Large and Diverse Stream Processing Graphs. In 2023 IEEE International Parallel
and Distributed Processing Symposium (IPDPS). IEEE, 435-445.

[9] Martin L Puterman. 1990. Markov decision processes. Handbooks in operations
research and management science 2 (1990), 331-434.

[10] Gabriele Russo Russo, Valeria Cardellini, and Francesco Lo Presti. 2019. Rein-
forcement learning based policies for elastic stream processing on heterogeneous
resources. In proceedings of the 13th ACM international conference on distributed
and event-based systems. 31-42.

[11] Gabriele Russo Russo, Matteo Nardelli, Valeria Cardellini, and Francesco Lo Presti.
2018. Multi-level elasticity for wide-area data streaming systems: a reinforcement
learning approach. Algorithms 11, 9 (2018), 134.

[12] Richard S Sutton, Andrew G Barto, et al. 1998. Reinforcement learning: An
introduction. Vol. 1. MIT press Cambridge.

[13] Kundjanasith Thonglek, Kohei Ichikawa, Chatchawal Sangkeettrakarn, and
Apivadee Piyatumrong. 2021. Auto-scaling system in apache spark cluster
using model-based deep reinforcement learning. Heuristics for Optimization and
Learning (2021), 347-360.

[14] Zhan Zhang, Tianming Liu, Yanjun Shu, Siyuan Chen, and Xian Liu. 2023.
Dynamic Adaptive Checkpoint Mechanism for Streaming Applications Based
on Reinforcement Learning. In 2022 IEEE 28th International Conference on Parallel
and Distributed Systems (ICPADS). IEEE, 538-545.



	1 Problem Statement
	2 Preliminaries
	2.1 Stream processing
	2.2 Reinforcement Learning

	3 Related Work
	3.1 Operator Scheduling
	3.2 Elasticity
	3.3 Resource Allocation

	4 Research Questions
	5 Approach
	5.1 Memory compression through RL
	5.2 Window-adaption through RL

	6 Evaluation Plan
	7 Conclusions and Reflections
	Acknowledgments
	References

