
Low-Latency GNN for quantum error correction
Alessio Cicero

supervised by Pedro Trancoso
co-supervised by Anton Frisk Kockum, Mats Granath

ciceroa@chalmers.se
Chalmers University of Technology and University of Gothenburg

Gothenburg, Sweden

Abstract
Real-time decoding of quantum error correction codes is one of the
important steps in achieving fault-tolerant quantum computing.
The error rate of physical qubits is currently too high to allow the
execution of complex applications. To overcome this issue, multiple
physical qubits are grouped into a logical qubit. The logical qubit
error rate is dependent on the ability to decode and correct errors in
the multiple physical qubits encoding one logical qubit. Although a
wide range of encoding approaches is possible, the surface code is
the most common encoding algorithm. Decoding must be done in
real-time to avoid an increasing backlog of errors. Different decod-
ing algorithms have been developed, such as minimum weight per-
fect matching, union-find and neural networks. Our work focuses
on the latter approach, proposing an implementation of a graph
neural network (GNN), able to decode the surface code up to code
distance 𝑑 = 7. We present CPU-, GPU- and FPGA-accelerated im-
plementations and compare them in terms of latency, accuracy and
power. The FPGA implementation, the only hardware-accelerated
solution that can achieve real-time decoding, is additionally com-
pared to the HDL implementation obtained with the GNNBuilder
framework.

CCS Concepts
• Computer systems organization→ Quantum computing.

Keywords
Quantum error correction, Surface code, GNN
ACM Reference Format:
Alessio Cicero, supervised by Pedro Trancoso, and co-supervised by An-
ton Frisk Kockum, Mats Granath. 2025. Low-Latency GNN for quantum
error correction. In Proceedings of 19th ACM International Conference on
Distributed and Event-based Systems (DEBS’25). ACM, New York, NY, USA,
4 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 Problem Statement
Quantum computers have the potential to speed up the resolution
of complex problems in multiple fields, such as developing new

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
DEBS’25, Gothenburg, Sweden
© 2025 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-XXXX-X/2018/06
https://doi.org/10.1145/nnnnnnn.nnnnnnn

chemical compounds [17] or evaluating the physical properties of
new materials [4]. While classical computers base their computa-
tions on bits, whose values can only be 0 or 1, quantum computers
are based on qubits. A qubit value is defined in a two-dimensional
complex vector space spanned by the basis vectors |0⟩ and |1⟩, as a
probability of being either zero or one:

|𝜓 ⟩ = 𝛼 |0⟩ + 𝛽 |1⟩ , (1)
with 𝛼 and 𝛽 being probability amplitudes, such that |𝛼 |2 + |𝛽 |2 = 1.
This principle of superposition, together with the related principle
of entanglement for multiple qubits allows to map more easily mul-
tiple optimisation problems and NP problems as quantum circuits,
and therefore speed up their execution compared to the classical
approach [18].

The maximum complexity of the problem we can solve is limited
by the size of the quantum circuits that the quantum computer can
run. The two main factors affecting this are the number of qubits
and their lifetime. While the former is constrained mainly by the
manufacturing capabilities, the latter is limited by the maximum
time after which the qubit value is no longer reliable, as it has
collapsed to either 0 or 1. This time is defined as the lifetime of the
qubit, and it is technology-dependent. To improve this, there is a
need to have quantum error correction [10].

As in the classical world, there are multiple quantum error correc-
tion codes, the most common one is the surface code [11]. Multiple
physical qubits are used to form a single logical qubit, with an over-
all logical error rate lower than the individual qubits’ physical error
rate. The physical qubits are measured, a graph is built out of the
readings, and it must be decoded before the next measurement, in
the case of surface code for superconducting qubits [12], this takes
1 µs [1]. This introduces a heavy constraint on the available decod-
ing time, which needs to be respected to have real-time quantum
computer quantum error correction.

2 Methodology
The methodology followed is experimental research. We need to
evaluate quantifiable metrics such as latency, resource utilisation
and accuracy to compare different implementations with the state
of the art. We are designing experiments such as parametric explo-
rations of different architectures, we compare them by the previ-
ously described metrics, and our methodology focuses on repro-
ducibility, measurement and comparative analysis.

It is the most suitable method as we can isolate the effect of
our design choice from the variation in the experiment set-up, by
keeping the dataset and model constant across implementations,
using the same toolchain and target frequency, and using the same
way of measuring the latency. The inference latency is considered

https://orcid.org/0009-0002-9176-0605
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

DEBS’25, June 10–13, 2025, Gothenburg, Sweden Cicero et al.

as the time to process a single graph, from input to output, and the
resources considered for the utilisation are the logic element, DSP
blocks and on-chip memory consumption reported by the synthesis
tool. The set-up time of the decoder, such as weight loading is
excluded as long as it is input dependant, and therefore it only
needs to be executed once at start-up time.

3 Research setting
As mentioned previously, the biggest constraint for a real-time
quantum error correction is the maximum decoding time. To avoid
a backlog of decoded syndromes, it is necessary to process each
error correction cycle before the next measurement is available.
Using a high-performance computer or considering unlimited com-
putational resources is not possible, as the decoding should be done
physically close to the quantum chip, to avoid having a too long
delay in the physical communication between the chip and the
decoder, which sometimes can even be longer than the total time
allowed to execute the decoding itself. The main research question
is finding a scalable, run-time, as accurate as possible quantum
error correction code and decoder.

My research focuses on investigating with a top-down approach
the combination of code and decoder, and the optimal implementa-
tion in hardware of the latter. Starting from the top level, there are
multiple quantum error correction codes, with varying accuracy,
complexity, and scalability. Each code can be decoded with multiple
types of algorithms, each one of them also with varying degree of
accuracy, complexity, and scalability. Lastly, their implementation
in hardware needs to achieve the wanted latency and this is done
through a design space exploration of possible hardware optimiza-
tions. The scalability of the decoder determines the maximum size
of the code or the number of logical qubits that can be decoded in
real-time. Increasing the size of the code leads to a lower logical
error rate, if the physical error rate of the single qubit is lower than
the code-dependent threshold [1]. To summarise, our research is
based on achieving the best accuracy, thanks to the most accurate
algorithm that can decode the biggest code distance graph while
running within the maximum latency.

4 Related work
The two most used quantum error correction codes are the surface
code [11] and low-density parity-check codes [6]. Surface code
based decoders use a variety of algorithms, including minimum
weight perfect matching (MWPM) implemented as Blossom Algo-
rithm [14], union find (UF) [8], belief propagation (BP) [19], and
neural networks [15].

Themost commonly used for hardware implementation isMWPM [3,
7, 23], with the current state of the art being the work Promatch [3].
They are able to decode surface codes of code distance up to 𝑑 = 13
while still being under the 1 µs threshold, and fitting the hardware
decoder in a single FPGA.While they are able to achieve the wanted
latency, the accuracy of the MWPM approach is still worse than
the one obtainable from a neural-network approach.

Another main line of works is on the UF decoding, which sacri-
fices even more accuracy, as the UF algorithm is even less accurate
compared to MWPM, to have a simpler algorithm and therefore
faster to execute. The state-of-the-art work implementing the UF

decoder on FPGA is [16]; they are able to decode surface codes up
to 𝑑 = 51 while still achieving the real-time maximum latency.

5 Research approach
To achieve the optimal decoder, it is necessary to explore the broad
design space of the quantum error correction code, the decoder
algorithm, and the decoder implementation.

5.1 Quantum error correction code
An initial exploration was done of the possible error correction
codes for a quantum circuit:

• Repetition codes [20]: the simplest one, but it can only correct
for one type of error (bit or phase), so is not a proper QEC
code

• Surface code [1, 9]: most commonly used, they have a better
scaling, but require a large qubit overhead

• Low-density parity check code [6]: has a lower overhead, so
it allows a better ratio of logical qubits to physical qubits,
but requires even more complex algorithms to be decoded,
therefore the latency increases

In our first work, the chosen quantum error correction code is
the surface code, as it presents a good trade-off between accuracy,
scalability, and complexity of the decoder.

5.2 Decoding algorithm
Also in the case of the decoding algorithm, there is a broad choice
of possible approaches; the most common are reported here:

• Union find decoder [8]: it is one of the simplest decoding
algorithms, but it also leads to a lower accuracy

• Minimum weight perfect matching [14]: it is the most com-
monly used, has better accuracy than union find, but also
higher complexity

• Belief Propagation [19]: more complex than MWPM, it has
seen more use for the LDPC codes as the MWPM cannot
decode quantum error correction codes as complex

• Neural-network-based decoders [5, 15, 21, 22]: depending
on the implementation, can be more or less complex, and
with more or less accuracy

We decided to pick the last type of decoder, starting from the GNN
implemented in [15], which can decode the surface code up to at
least distance 7 with better accuracy compared to heuristic algo-
rithms such as MWPM and UF [15], while still keeping the com-
plexity limited. The comparison in terms of latency and accuracy
between the software implementation of the GNN and a software
implementation of MWPM [13] is shown in Fig. 1 and in Fig. 2.

5.3 GNN hardware implementation
The software implementation of the GNN has a latency in the
order of hundreds of 𝜇𝑠 , therefore it is orders of magnitudes slower
than the wanted threshold. A first hardware implementation has
been done through the framework GNNBuilder [2], which can
map a GNN composed of multiple type of layers to an FPGA. This
first implementation shows good results, but it is still an order of
magnitude slower compared to the threshold latency, therefore
a custom design is required to achieve the 1 µs. The single-layer

Low-Latency GNN for quantum error correction DEBS’25, June 10–13, 2025, Gothenburg, Sweden

Figure 1: Comparison of the inference time between the soft-
ware implementation of MWPM [13] and the software im-
plementation of the GNN [15]

Figure 2: Comparison of the logical failure rate of the soft-
ware implementation of MWPM [13] and the software im-
plementation of the GNN [15]

execution has a latency of the order of 50 µs, as shown in Fig. 3,
therefore we plan to find the best trade-off between hardware re-use
and overall latency to achieve the wanted threshold latency.

6 Evaluation plan
The custom hardware implementation of the GNNwill be evaluated
with the same metrics as those used for the preliminary studies on
the decoding algorithm and the GNNBuilder FPGA implementa-
tion. Its accuracy will be compared to the GNN software version
and the MWPM software version, to validate that the achieved
hardware is better in terms of accuracy compared to the state-of-
art implementations. Then the latency decrease will be evaluated
compared to the wanted threshold of 1 µs, to the software implemen-
tation of the GNN and to a hardware implementation of the GNN

Figure 3: Comparison of the inference time of the software
implementation of the GNN in blue [15] and the hardware
implementation generated by GNNBuilder [2]

done with a GNN hardware-implementation generation framework,
GNNBuilder [2]. This will eventually validate if the ad-hoc imple-
mentation can achieve better results than the state-of-art GNN
hardware generation tool, and if a GNN decoder is the right path
to achieving the most accurate real-time error correction

7 Conclusions and reflections
Quantum computer research is rapidly developing, with an evolving
focus on achieving fault-tolerant quantum computers. Quantum
error correction is one of the big challenges that needs to be solved
before this is possible, and multiple different approaches are being
researched to achieve this. While a lot of different quantum error
correction codes are being evaluated, surface codes are still the
most promising to be run in real-time. GNN decoders are promising
approaches to achieve a better accuracy, which leads to a lower
logical error rate and therefore requires a smaller number of physi-
cal qubits to achieve the same overall logical error rate, allowing
for better scalability. The first step of my work was to implement
the GNN with the GNNBuilder framework, which can fit the GNN
in a single FPGA but it is not able to execute it within the wanted
maximum latency. Therefore an ad-hoc hardware implementation
is required to achieve the wanted performances, and will lead to
a more accurate quantum error correction system. Future work
will be based on these results, and if this approach is confirmed
as promising as expected, GNN will continue to be the most fit
decoders for the surface code. If this is not the case, a further explo-
ration of error correction codes and decoders will be necessary to
find the best set-up which will allow a scalable, accurate, quantum
error correction device.

Acknowledgments
We acknowledge support from the Swedish Foundation for Strategic
Research (grant number FUS21-0063).

DEBS’25, June 10–13, 2025, Gothenburg, Sweden Cicero et al.

References
[1] 2023. Suppressing quantum errors by scaling a surface code logical qubit. Nature

614, 7949 (2023), 676–681.
[2] Stefan Abi-Karam and Cong Hao. 2023. Gnnbuilder: An automated framework

for generic graph neural network accelerator generation, simulation, and opti-
mization. In 2023 33rd International Conference on Field-Programmable Logic and
Applications (FPL). IEEE, 212–218.

[3] Narges Alavisamani, Suhas Vittal, Ramin Ayanzadeh, Poulami Das, and Moin-
uddin Qureshi. 2024. Promatch: Extending the Reach of Real-Time Quantum
Error Correction with Adaptive Predecoding. In Proceedings of the 29th ACM
International Conference on Architectural Support for Programming Languages and
Operating Systems, Volume 3. 818–833.

[4] Bela Bauer, Sergey Bravyi, MarioMotta, and Garnet Kin-Lic Chan. 2020. Quantum
Algorithms for Quantum Chemistry and Quantum Materials Science. Chem-
ical Reviews 120, 22 (2020), 12685–12717. doi:10.1021/acs.chemrev.9b00829
arXiv:https://doi.org/10.1021/acs.chemrev.9b00829

[5] Johannes Bausch, Andrew W Senior, Francisco JH Heras, Thomas Edlich, Alex
Davies, Michael Newman, Cody Jones, Kevin Satzinger, Murphy Yuezhen Niu,
Sam Blackwell, et al. 2023. Learning to decode the surface code with a recurrent,
transformer-based neural network. arXiv preprint arXiv:2310.05900 (2023).

[6] Nikolas P Breuckmann and Jens Niklas Eberhardt. 2021. Quantum low-density
parity-check codes. Prx Quantum 2, 4 (2021), 040101.

[7] Poulami Das, Aditya Locharla, and Cody Jones. 2022. Lilliput: a lightweight
low-latency lookup-table decoder for near-term quantum error correction. In
Proceedings of the 27th ACM International Conference on Architectural Support for
Programming Languages and Operating Systems. 541–553.

[8] Nicolas Delfosse and Naomi H Nickerson. 2021. Almost-linear time decoding
algorithm for topological codes. Quantum 5 (2021), 595.

[9] Eric Dennis, Alexei Kitaev, Andrew Landahl, and John Preskill. 2002. Topological
quantum memory. J. Math. Phys. 43, 9 (2002), 4452–4505.

[10] Simon J Devitt, William J Munro, and Kae Nemoto. 2013. Quantum error correc-
tion for beginners. Reports on Progress in Physics 76, 7 (2013), 076001.

[11] Austin G Fowler, Matteo Mariantoni, John M Martinis, and Andrew N Cleland.
2012. Surface codes: Towards practical large-scale quantum computation. Physical
Review A—Atomic, Molecular, and Optical Physics 86, 3 (2012), 032324.

[12] JayMGambetta, JerryMChow, andMatthias Steffen. 2017. Building logical qubits
in a superconducting quantum computing system. npj quantum information 3, 1
(2017), 2.

[13] Oscar Higgott. 2022. Pymatching: A python package for decoding quantum
codes with minimum-weight perfect matching. ACM Transactions on Quantum
Computing 3, 3 (2022), 1–16.

[14] Vladimir Kolmogorov. 2009. Blossom V: a new implementation of a minimum
cost perfect matching algorithm. Mathematical Programming Computation 1
(2009), 43–67.

[15] Moritz Lange, Pontus Havström, Basudha Srivastava, Valdemar Bergentall, Karl
Hammar, Olivia Heuts, Evert van Nieuwenburg, and Mats Granath. 2023. Data-
driven decoding of quantum error correcting codes using graph neural networks.
arXiv preprint arXiv:2307.01241 (2023).

[16] Namitha Liyanage, Yue Wu, Siona Tagare, and Lin Zhong. 2024. FPGA-based
distributed union-find decoder for surface codes. IEEE Transactions on Quantum
Engineering (2024).

[17] Sam McArdle, Suguru Endo, Alán Aspuru-Guzik, Simon C. Benjamin, and Xiao
Yuan. 2020. Quantum computational chemistry. Reviews of Modern Physics 92
(Mar 2020), 015003. Issue 1. doi:10.1103/RevModPhys.92.015003

[18] Michael A. Nielsen and Isaac L. Chuang. 2023. Quantum Computation and
Quantum Information. Cambridge University Press.

[19] Josias Old and Manuel Rispler. 2023. Generalized belief propagation algorithms
for decoding of surface codes. Quantum 7 (2023), 1037.

[20] Peter W Shor. 1995. Scheme for reducing decoherence in quantum computer
memory. Physical review A 52, 4 (1995), R2493.

[21] Boris M Varbanov, Marc Serra-Peralta, David Byfield, and Barbara M Terhal.
2025. Neural network decoder for near-term surface-code experiments. Physical
Review Research 7, 1 (2025), 013029.

[22] Savvas Varsamopoulos, Koen Bertels, and Carmen G Almudever. 2020. Decoding
surface code with a distributed neural network–based decoder. QuantumMachine
Intelligence 2 (2020), 1–12.

[23] Suhas Vittal, Poulami Das, and Moinuddin Qureshi. 2023. Astrea: Accurate
quantum error-decoding via practical minimum-weight perfect-matching. In
Proceedings of the 50th Annual International Symposium on Computer Architecture.
1–16.

https://doi.org/10.1021/acs.chemrev.9b00829
https://arxiv.org/abs/https://doi.org/10.1021/acs.chemrev.9b00829
https://doi.org/10.1103/RevModPhys.92.015003

	Abstract
	1 Problem Statement
	2 Methodology
	3 Research setting
	4 Related work
	5 Research approach
	5.1 Quantum error correction code
	5.2 Decoding algorithm
	5.3 GNN hardware implementation

	6 Evaluation plan
	7 Conclusions and reflections
	Acknowledgments
	References

