
Toward Efficient Asynchronous Shortest Path
Marco D’Antonio

Supervised by Hans Vandierendonck, Thai Son Mai

Queen’s University Belfast

Belfast, United Kingdom

Abstract
Single-Source Shortest Path (SSSP) is a fundamental graph problem

that arises in various applications and complex problems. State-of-

the-art solutions to the parallel SSSP problem create parallelism

through priority coarsening, which results in redundant work and

reduces the efficiency of the solution. Our research investigates a

novel solution for SSSP that addresses the parallelism-redundant

work problem using on-demand priority relaxation. Our prelim-

inary results show that our implementation has competitive or

better performance than state-of-the-art implementations of SSSP,

including GAP, GBBS, and the MultiQueue, on 13 diverse graphs,

with speedups up to 2.94× higher than the state of the art.

CCS Concepts
• Theory of computation → Shared memory algorithms;
Shortest paths; Concurrent algorithms.

Keywords
Graph Algorithms, Single-Source Shortest Path, Shared-Memory

1 Problem Statement
Single-Source Shortest Path (SSSP) is an important problem that

arises in various domains, including routing [17], network anal-

ysis [16, 31], and calculating the betweenness centrality of a net-

work [6]. Given a weighted graph 𝐺 = (𝑉 , 𝐸,𝑤) with a set of

vertices 𝑉 , a set of edges 𝐸 = {(𝑢, 𝑣) | (𝑢, 𝑣) ∈ 𝑉 2 ∧ 𝑢 ≠ 𝑣}, an
edge weight function𝑤 : 𝐸 → R≥0, and a source vertex 𝑠 ∈ 𝑉 , the

Single-Source Shortest Path problem is the problem of finding the

shortest path from 𝑠 to every other vertex in the graph.

SSSP is usually solved using either Δ-stepping [20] or parallel

Dijkstra’s algorithm [13]. The main challenge in parallel SSSP is the

trade-off between parallelism and redundant work. The sequential

Dijkstra’s algorithm completes with minimal work due to exploring

paths based on priority order. However, the priority queue does not

expose enough parallelism to be efficiently parallelized. Creating

parallelism requires an alteration of the priority order, which we

define as priority drifting. This leads to less efficient exploration

and results in redundant work, such as traversing suboptimal paths.

Δ-stepping overcomes the lack of parallelism through Δ-coarsening:
the distance of each vertex is coarsened by a factor Δ, and vertices

with the same coarsened distance are processed in parallel [20]. Re-

cently, relaxed priority queues – that allow elements to be extracted

in a relaxed order – have been proposed to improve parallelism of

the traditional Dijkstra’s algorithm [1, 23, 24, 29].

We conjecture that the priority drifting introduced by both solu-

tion approaches is indiscriminate and hence sub-optimal, as they

may introduce priority drifting at times when it is not helpful, and

may fail to introduce priority drifting when it is necessary. We

frie
nd

ste
r

km
er-

v1
r
kro

n
maw

i

molie
re

ork
ut

roa
d-e

u

roa
d-u

sa

sk-
20

05
tw

itte
r

uk
-20

07

uk
-un

ion
-06
ura

nd

Graph

0

20

40

60

80

100

Ti
m

e
[%

]

Compute Barriers Other

Figure 1: The execution breakdown of synchronous Δ-
stepping on the real graph datasets of our experimental eval-
uation using the GAP [3].

claim it is necessary to identify events during the execution of SSSP

algorithms that are good occasions for introducing priority drifting,

and that this will lead to a more balanced and justified priority

drifting, hence the execution of less redundant work and increased

efficiency.

2 Related Work
Dijkstra’s algorithm [13] has the best-known bound of 𝑂 (|𝐸 | +
|𝑉 | log |𝑉 |) time complexity using a priority queue [7, 25], greedily

processing the closest vertices to the source in the frontier of unset-

tled vertices. Since distances are stored in a priority queue, we often

refer to the distance as priority. Note that the highest priority vertex

has the smallest distance from the source. As is, Dijkstra’s algorithm

does not expose enough parallelism to be efficiently parallelized be-

cause, in order to respect priorities, we would only find parallelism

of degree 𝑘 if there are 𝑘 vertices with the same, highest priority

in the queue. It is rare that 𝑘 would be high. Relaxed concurrent

priority queues solve this problem by sacrificing work efficiency. By

relaxing priorities, relaxed priority queues allow threads to retrieve

one of the 𝑘 closest vertices to the sources [1, 23, 24, 29].

The other common approach to parallel SSSP is Δ-stepping [20].
It maintains the frontier of active vertices in a set of buckets. Bucket

𝑖 stores vertices𝑢 such that the distance of𝑢 from the source,𝑑 (𝑢) ∈
[𝑖 ·Δ, (𝑖 +1) ·Δ), where Δ is a graph-dependent constant. Therefore,

vertex 𝑣 with distance 𝑑 (𝑣) will be stored in bucket 𝑖′ = ⌊𝑑 (𝑣)/Δ⌋.
The buckets are then processed in parallel, processing each of the

vertices in them. The Δ-coarsening of priorities creates priority
drifting: mapping vertices with different distances into the same

bucket leads to processing that is out of the work-efficient order

Marco D’Antonio

of Dijkstra’s algorithm. This additional processing is considered

redundant work and reduces work efficiency. The larger the Δ, the
lower the work efficiency. However, the loss of work efficiency is

counterbalanced by the creation of more parallelism. As a result,

the choice of the Δ parameter is crucial to balance the trade-off

between efficiency and parallelism.

State-of-the-art parallel Δ-stepping implementations often emu-

late the sequential behavior of the original algorithm, i.e. the parallel

computation is organized in bulk-synchronous steps [26], during

which buckets are processed in parallel. Once a bucket has been

processed, threads synchronize through a barrier and coordinate to

prepare the bucket for the next step. In more detail:

• The GAP Benchmarking Suite [3] implements Δ-stepping us-

ing thread-local buckets. At each step, a shared frontier array

is populated and then processed in parallel. GAP implements

the bucket fusion optimization [33], in which each thread pro-

cesses the local content of the current bucket after processing

the frontier. This allows for a reduction in the number of steps

and, therefore, the synchronization costs.

• Julienne [11] implements a centralized, parallel bucketing struc-

ture. It provides an efficient parallel interface to retrieve all ver-

tices mapped to a bucket and to apply updates and resize the

buckets in parallel.

Other synchronous approaches that wewill consider areΔ∗
-stepping

and 𝜌-stepping [14], which process vertices with a distance up to a

certain threshold in parallel at each step. The Lazy-Batched Priority

Queue is introduced to support this framework and is implemented

as a parallel hash-bag to extract and update vertices [27]. One

drawback of synchronous implementations is the cost of thread

synchronization, as a barrier must be issued at the end of each

step. This can be problematic in large-diameter graphs, such as

road networks, due to the large number of steps required while few

vertices are processed per step. Moreover, skewed-degree graphs

can also incur large synchronization costs, as due to workload im-

balance issues, threads processing high-degree vertices take longer

to complete and can hold back other threads from progressing. We

show this for the graphs used in our experimental evaluation in

Figure 1.

Asynchronous designs for bothDijkstra’s algorithm andΔ-stepping
have been proposed in the literature. The parallel Dijkstra’s algo-

rithm implementations use a relaxed priority queue, and threads

can independently retrieve vertices from the priority queue. The

asynchronous Δ-stepping implementations use different underly-

ing data structures, with lower sequential overheads since priorities

are coarsened.

• The MultiQueue [24] is a relaxed priority queue used to im-

plement a parallel version of Dijkstra’s algorithm. It uses a to-

tal number of 𝑐𝑝 lock-protected priority queues, where 𝑐 is a

tuning parameter and 𝑝 is the number of threads. Vertices are

extracted by randomly selecting two queues and extracting the

higher-priority vertex, while generated vertices are pushed to a

randomly chosen queue. The rank error of the relaxed priority

queue is 𝑂 (𝑝 log 𝑝) w.h.p.
In the future, we will consider Galois’ [21, 22] implementation

of SSSP, the Multi Bucket Queue [32], and the Stealing Multi-

Queue [23]. In the case of a priority queue-based implementation,

frie
nd

ste
r

km
er-

v1
r
kro

n
maw

i

molie
re

ork
ut

roa
d-e

u

roa
d-u

sa

sk-
20

05
tw

itte
r

uk
-20

07

uk
-un

ion
-06
ura

nd

Graph

0

20

40

60

80

100

Ti
m

e
[%

]

MQ Operations Edge Relaxations

Figure 2: The execution breakdown in MultiQueue (MQ) op-
erations (Push+Pop) and algorithm execution (Edge Relax-
ations) of asynchronous parallel Dijkstra’s algorithm on the
real graph datasets of our experimental evaluation using the
MultiQueue [24, 28].

the execution time of an algorithm is mainly split between computa-

tion and queue operations (Figure 2). The queue operations include

not only the synchronization costs, but also the sequential costs of

managing the priority queue. In the case of the MultiQueue, each

priority queue is a 𝑑-ary heap, with non-constant insertion and

deletion costs. The chart shows that, for most graphs, the time spent

accessing concurrent shared data structures is between 20-30% of

the execution time.

3 Proposed Approach
We propose a novel algorithm, Wasp, that introduces priority drift-

ing only when high-priority work is not available. This strategy

allows Wasp to increase thread occupancy when parallelism is low,

e.g., on large-diameter graphs, keeping threads busy instead of idle.

On the other hand, when parallelism is available, e.g., on small-

diameter graphs, Wasp follows the priority order, minimizing the

generated redundant work.

Wasp organizes vertices in buckets based on their distance from

the source, similar to Δ-stepping. However, Wasp operates asyn-

chronously, allowing threads to progress independently without

waiting for others to complete a priority level. Each thread works

with a distributed bucket structure consisting of:

• Thread-local buckets for each coarsened priority level.

• A special work-stealing enabled "current bucket" that holds

vertices at the current priority level.

This design eliminates synchronization overhead with constant-

time insertion and deletion operations, while enabling workload

balancing through work stealing. In contrast, the MultiQueue, for

example, has non-constant sequential insertion and deletion opera-

tions, due to the underlying heap structure.

During execution, each thread extracts vertices from its current

bucket and processes them if they aren’t stale (meaning no bet-

ter path has been found concurrently). When processing edges,

destination vertices are updated using atomic Compare-and-Swap

Toward Efficient Asynchronous Shortest Path

Table 1: Graph datasets used in the experimental evaluation.
|𝑉 | is the number of vertices, |𝐸 | is the number of edges.

Graph |𝑉 | |𝐸 | Graph Type

Friendster [30] 68.3 M 2.58 B Social Network

Kmer-v1r 214. M 465.4 M Biological Network

Kron [19] 134.2 M 4.22 B Synthetic Graph

Mawi 226.2 M 480 M Network Traffic

Moliere 30.2 M 6.67 B Semantic Network

Orkut [30] 3.1 M 234.4 M Social Network

Road-EU [2] 54.1 M 108.1 M Road Network

Road-USA [10] 23.9 M 57.7 M Road Network

sk-2005 50.6 M 1.93 B Web Crawl

Twitter [18] 61.6 M 1.46 B Social Network

uk-2007 [2] 104.3 M 6.6 B Web Crawl

uk-union-06 131.8 M 7.11 B Web Crawl

Urand [15] 134.2 M 4.29 B Synthetic Graph

operations. Updated vertices are then pushed either to the current

bucket or thread-local buckets based on their priority level. When

the current bucket of a thread becomes empty, the thread attempts

to steal high-priority vertices from other threads before processing

its own lower-priority vertices; this allows the algorithm to al-

ways prioritize high-priority work. This is a fundamental difference

from traditional work-stealing protocols [4, 5] as the priority-based

mechanism enables more efficient scheduling choices. Importantly,

stolen vertices are processed immediately and cannot be stolen

again. Without synchronization barriers, threads can advance in-

dependently, i.e. when one thread exhausts its current bucket, it

can steal work while others continue processing. After handling

stolen vertices, threads process any newly discovered vertices in

their current bucket. If none exist, they find the next priority level

to work on from their thread-local buckets. This asynchronous

approach enables greater parallelism than synchronous schedulers,

where threads might idle waiting for others before advancing to the

next bucket. Wasp achieves this while still prioritizing high-priority

work through its efficient work-stealing mechanism.

4 Preliminary Results
Wasp is evaluated on two machines: Epyc and Xeon. Epyc is a

128-core AMD EPYC 7713 processor, while Xeon is a 64-core Intel

Sapphire Rapids Xeon Gold 6438Y+ processor with hyper-threading.

In our preliminary results, we compare Wasp against three state-

of-the-art implementations: the GAP benchmarking suite [3], the

GBBS graph framework [12], that uses the Julienne bucketing ap-

proach described in Section 2, and parallel Dijkstra’s algorithm

using thr MultiQueue [24].

The evaluation is carried out on 13 graphs, 11 of which are real-

world graphs. The graphs, their number of vertices and edges, and

their type are listed in Table 1. We use different types of graphs:

road and biological graphs are characterized by large diameters and

vertices with low degrees; Urand is an Erdős–Rényi random graph

with uniform degree distribution, while the others have a skewed

degree distribution and a small diameter.

Table 2: Execution time in seconds of SSSP. The fastest execu-
tion time for each graph is highlighted in bold. The last row
shows the aggregated speedup of Wasp over the baselines.

Epyc Xeon

Graph Wasp GAP GBBS MQ Wasp GAP GBBS MQ

Friendster 1.52 1.75 3.28 3.63 1.07 1.17 1.82 2.56

Kmer-v1r 1.15 1.33 3.71 2.03 0.96 0.97 2.35 1.92

Kron 2.80 3.00 4.16 3.88 1.75 1.66 2.22 3.46

Mawi 0.77 2.80 0.55 31.93 1.95 3.46 0.94 77.78

Moliere 2.15 2.43 4.56 7.59 1.41 1.62 2.08 2.91

Orkut 0.10 0.13 0.16 0.21 0.07 0.10 0.11 0.18

Road-EU 0.15 0.23 1.18 0.39 0.13 0.15 0.83 0.42

Road-USA 0.13 0.24 6.05 0.21 0.15 0.21 3.98 0.22

sk-2005 0.51 0.63 1.26 1.28 0.56 0.61 0.96 1.18

Twitter 0.97 1.83 1.88 1.66 0.78 1.38 1.36 1.37

uk-2007 0.57 0.94 1.38 2.30 0.43 0.70 0.92 2.04

uk-union-06 1.63 2.47 2.90 6.42 1.74 2.48 2.63 5.90

Urand 5.59 6.06 9.05 12.12 3.59 3.54 5.40 8.67

gmean 1.45× 2.62× 2.91× 1.27× 2.1× 2.98×

Tuning the Δ parameter in Δ-stepping appropriately is critical

for good performance [8]. In the case of Wasp, selecting Δ = 1

for skewed-degree graphs is a safe estimate resulting in reliably

good performance, with at most a 20% performance loss compared

to the optimal Δ. This is a direct result of Wasp’s design, as it

creates parallelism and priority drifting through Δ-coarsening and

selectively executing low-priority tasks.

Table 2 shows the execution time and aggregate speedup using

geometric mean (gmean) of Wasp and the baseline we compare

against on both machines. Wasp is slower only in four out of 26

cases. Wasp performs better than GBBS in most cases. Wasp ob-

tains better speedups on large-diameter graphs. Due to the bulk-

synchronous nature of GBBS, many barriers are performed because

of the large diameter, while only a few relaxations happen at each

round due to the low degree of vertices. Conversely, GBBS is more

competitive on scale-free graphs such as Kron. Wasp has a 1.41×
and a 2× slowdown, respectively, on Epyc and Xeon compared

to GBBS on the Mawi graph. This is due to the graph’s structure,

which presents a high-degree vertex connected to 93% of the ver-

tices and is better handled with the synchronous structure of GBBS.

To achieve better performance on this graph, we prevent adding

degree-1 leaf vertices to the scheduler to avoid useless work. We

use this optimization on all graphs.

Wasp consistently outperforms MQ for all graphs. Speedups

range from 1.38× to 4× on Epyc and from 1.52× to 4.7× on Xeon.

Compared to GAP, higher performance improvement is due to the

reduction of thread idleness. Wasp’s speedup over GAP reaches

3.6× for Mawi and 1.9× for Twitter on Epyc, and 1.7× for Mawi and

Twitter on Xeon. Wasp is competitive with GAP on graphs like

Friendster and Kmer-v1 and on par with GAP on synthetic graphs.

For Kron and Uran on Xeon, Wasp is slightly behind.

5 Conclusion and Future Work
Wasp is a promising novel algorithm for solving SSSP in parallel.

It employs an asynchronous design with distributed buckets, en-

abling load balancing and priority drifting under low parallelism.

Experiments on 13 graph datasets show Wasp outperforms GAP by

Marco D’Antonio

1.36×, GBBS by 2.34×, and MQ by 2.94× using their best Δ values.

We used Wasp in the Fastcode Programming Challenge, as part of

a scheduler for solving SSSP on real-world graphs [9], achieving

first place in the SSSP track.

In the future, we aim to further improve our algorithmwith other

optimizations, in particular for NUMA-awareness and for increasing

the workload-balancing on skewed-degree graphs. Moreover, we

would like to address the Δ-tuning problem, a challenge that is still

unsolved – although our algorithm provides good performance with

a small Δ for skewed-degree graphs – proposing a data structure

that automatically balances the parallelism-redundant work trade-

off, without requiring manual tuning of parameters.

References
[1] Dan Alistarh, Justin Kopinsky, Jerry Li, and Nir Shavit. 2015. The SprayList:

A Scalable Relaxed Priority Queue. In Proceedings of the 20th ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming (PPoPP 2015).
Association for Computing Machinery, New York, NY, USA, 11–20. doi:10.1145/

2688500.2688523

[2] David A Bader, Henning Meyerhenke, Peter Sanders, and Dorothea Wagner.

2012-02-13/2012-02-14. Graph Partitioning and Graph Clustering. 10th DIMACS
Implementation ChallengeWorkshop. ContemporaryMathematics, Vol. 588. Amer-

ican Mathematical Society and Center for Discrete Mathematics and Theoretical

Computer Science. https://sites.cc.gatech.edu/dimacs10

[3] Scott Beamer, Krste Asanović, and David Patterson. 2017. The GAP Benchmark

Suite. doi:10.48550/arXiv.1508.03619 arXiv:1508.03619 [cs]

[4] Robert D. Blumofe, Christopher F. Joerg, Bradley C. Kuszmaul, Charles E.

Leiserson, Keith H. Randall, and Yuli Zhou. 1995. Cilk: An Efficient Multi-

threaded Runtime System. ACM SIGPLAN Notices 30, 8 (Aug. 1995), 207–216.
doi:10.1145/209937.209958

[5] Robert D. Blumofe and Charles E. Leiserson. 1999. Scheduling Multithreaded

Computations by Work Stealing. J. ACM 46, 5 (Sept. 1999), 720–748. doi:10.1145/

324133.324234

[6] Ulrik Brandes. 2001. A Faster Algorithm for Betweenness Centrality*. The Journal
of Mathematical Sociology 25, 2 (June 2001), 163–177. doi:10.1080/0022250X.2001.

9990249

[7] Gerth Stølting Brodal. 1996. Worst-Case Efficient Priority Queues. In Proceedings
of the Seventh Annual ACM-SIAM Symposium on Discrete Algorithms (SODA ’96).
Society for Industrial and Applied Mathematics, USA, 52–58.

[8] Venkatesan T. Chakaravarthy, Fabio Checconi, Prakash Murali, Fabrizio Petrini,

and Yogish Sabharwal. 2017. Scalable Single Source Shortest Path Algorithms

for Massively Parallel Systems. IEEE Transactions on Parallel and Distributed
Systems 28, 7 (July 2017), 2031–2045. doi:10.1109/TPDS.2016.2634535

[9] Marco D’Antonio, Kåre von Geijer, Thai Son Mai, Philippas Tsigas, and Hans

Vandierendonck. 2025. Relax and Don’t Stop: Graph-aware Asynchronous SSSP.

In Proceedings of the 1st FastCode Programming Challenge (FCPC ’25). Association
for Computing Machinery, New York, NY, USA, 43–47. doi:10.1145/3711708.

3723446

[10] Camil Demetrescu, Andrew V. Goldberg, and David S. Johnson. 2009. The Short-
est Path Problem: Ninth DIMACS Implementation Challenge. DIMACS Series in

Discrete Mathematics and Theoretical Computer Science, Vol. 74. American

Mathematical Society and Center for Discrete Mathematics and Theoretical

Computer Science. http://www.dis.uniroma1.it/~challenge9/

[11] Laxman Dhulipala, Guy Blelloch, and Julian Shun. 2017. Julienne: A Framework

for Parallel Graph Algorithms Using Work-efficient Bucketing. In Proceedings of
the 29th ACM Symposium on Parallelism in Algorithms and Architectures (SPAA
’17). Association for Computing Machinery, New York, NY, USA, 293–304. doi:10.

1145/3087556.3087580

[12] Laxman Dhulipala, Guy E. Blelloch, and Julian Shun. 2021. Theoretically Efficient

Parallel Graph Algorithms Can Be Fast and Scalable. ACMTransactions on Parallel
Computing 8, 1 (April 2021), 4:1–4:70. doi:10.1145/3434393

[13] E. W. Dijkstra. 1959. A Note on Two Problems in Connexion with Graphs. Numer.
Math. 1, 1 (Dec. 1959), 269–271. doi:10.1007/BF01386390

[14] Xiaojun Dong, Yan Gu, Yihan Sun, and Yunming Zhang. 2021. Efficient Stepping

Algorithms and Implementations for Parallel Shortest Paths. In Proceedings of the
33rd ACM Symposium on Parallelism in Algorithms and Architectures. 184–197.
doi:10.1145/3409964.3461782

[15] Paul Erdős and Alfréd Rényi. 1960. On the Evolution of Random Graphs. Publ.
math. inst. hung. acad. sci 5, 1 (1960), 17–60.

[16] R. Guimerà, S. Mossa, A. Turtschi, and L. A. N. Amaral. 2005. The Worldwide

Air Transportation Network: Anomalous Centrality, Community Structure, and

Cities’ Global Roles. Proceedings of the National Academy of Sciences 102, 22

(May 2005), 7794–7799. doi:10.1073/pnas.0407994102

[17] Torsten Hoefler, Timo Schneider, and Andrew Lumsdaine. 2009. Optimized

Routing for Large-Scale InfiniBand Networks. In 2009 17th IEEE Symposium on
High Performance Interconnects. 103–111. doi:10.1109/HOTI.2009.9

[18] Haewoon Kwak, Changhyun Lee, Hosung Park, and Sue Moon. 2010. What Is

Twitter, a Social Network or a News Media?. In Proceedings of the 19th Interna-
tional Conference on World Wide Web (WWW ’10). Association for Computing

Machinery, New York, NY, USA, 591–600. doi:10.1145/1772690.1772751

[19] Jurij Leskovec, Deepayan Chakrabarti, Jon Kleinberg, and Christos Faloutsos.

2005. Realistic, Mathematically Tractable Graph Generation and Evolution,

Using Kronecker Multiplication. In Knowledge Discovery in Databases: PKDD
2005 (Lecture Notes in Computer Science), Alípio Mário Jorge, Luís Torgo, Pavel

Brazdil, Rui Camacho, and João Gama (Eds.). Springer, Berlin, Heidelberg, 133–

145. doi:10.1007/11564126_17

[20] U. Meyer and P. Sanders. 2003. Δ-Stepping: A Parallelizable Shortest Path

Algorithm. Journal of Algorithms 49, 1 (Oct. 2003), 114–152. doi:10.1016/S0196-
6774(03)00076-2

[21] Donald Nguyen, Andrew Lenharth, and Keshav Pingali. 2013. A Lightweight

Infrastructure for Graph Analytics. In Proceedings of the Twenty-Fourth ACM
Symposium onOperating Systems Principles (SOSP ’13). Association for Computing

Machinery, New York, NY, USA, 456–471. doi:10.1145/2517349.2522739

[22] Keshav Pingali, Donald Nguyen, Milind Kulkarni, Martin Burtscher, M. Amber

Hassaan, Rashid Kaleem, Tsung-Hsien Lee, Andrew Lenharth, Roman Manevich,

Mario Méndez-Lojo, Dimitrios Prountzos, and Xin Sui. 2011. The Tao of Paral-

lelism in Algorithms. In Proceedings of the 32nd ACM SIGPLAN Conference on
Programming Language Design and Implementation (PLDI ’11). Association for

Computing Machinery, New York, NY, USA, 12–25. doi:10.1145/1993498.1993501

[23] Anastasiia Postnikova, Nikita Koval, Giorgi Nadiradze, and Dan Alistarh. 2022.

Multi-Queues Can Be State-of-the-Art Priority Schedulers. In Proceedings of the
27th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming
(PPoPP ’22). Association for Computing Machinery, New York, NY, USA, 353–367.

doi:10.1145/3503221.3508432 arXiv:2109.00657 [cs]

[24] Hamza Rihani, Peter Sanders, and Roman Dementiev. 2015. MultiQueues: Simple

Relaxed Concurrent Priority Queues. In Proceedings of the 27th ACM Sympo-
sium on Parallelism in Algorithms and Architectures (SPAA ’15). Association for

Computing Machinery, New York, NY, USA, 80–82. doi:10.1145/2755573.2755616

[25] Robert E. Tarjan and Uzi Vishkin. 1985. An Efficient Parallel Biconnectivity

Algorithm. SIAM J. Comput. 14, 4 (Nov. 1985), 862–874. doi:10.1137/0214061
[26] Leslie G. Valiant. 1990. A Bridging Model for Parallel Computation. Commun.

ACM 33, 8 (Aug. 1990), 103–111. doi:10.1145/79173.79181

[27] Letong Wang, Xiaojun Dong, Yan Gu, and Yihan Sun. 2023. Parallel Strong

Connectivity Based on Faster Reachability. Proc. ACM Manag. Data 1, 2 (June
2023), 114:1–114:29. doi:10.1145/3589259

[28] Marvin Williams, Peter Sanders, and Roman Dementiev. 2021. Engineer-

ing MultiQueues: Fast Relaxed Concurrent Priority Queues. In DROPS-
IDN/v2/Document/10.4230/LIPIcs.ESA.2021.81. Schloss Dagstuhl – Leibniz-

Zentrum für Informatik. doi:10.4230/LIPIcs.ESA.2021.81

[29] Martin Wimmer, Jakob Gruber, Jesper Larsson Träff, and Philippas Tsigas. 2015.

The Lock-Free k-LSM Relaxed Priority Queue. ACM SIGPLAN Notices 50, 8 (Jan.
2015), 277–278. doi:10.1145/2858788.2688547

[30] Jaewon Yang and Jure Leskovec. 2012. Defining and Evaluating Network Com-

munities Based on Ground-Truth. In Proceedings of the ACM SIGKDD Workshop
on Mining Data Semantics (MDS ’12). Association for Computing Machinery,

New York, NY, USA, 1–8. doi:10.1145/2350190.2350193

[31] F. Benjamin Zhan and Charles E. Noon. 1998. Shortest Path Algorithms: An

Evaluation Using Real Road Networks. Transportation Science 32, 1 (Feb. 1998),
65–73. doi:10.1287/trsc.32.1.65

[32] Guozheng Zhang, Gilead Posluns, and Mark C. Jeffrey. 2024. Multi Bucket

Queues: Efficient Concurrent Priority Scheduling. In Proceedings of the 36th ACM
Symposium on Parallelism in Algorithms and Architectures (SPAA ’24). Association
for Computing Machinery, New York, NY, USA, 113–124. doi:10.1145/3626183.

3659962

[33] Yunming Zhang, Ajay Brahmakshatriya, Xinyi Chen, Laxman Dhulipala, Shoaib

Kamil, Saman Amarasinghe, and Julian Shun. 2020. Optimizing Ordered Graph

Algorithms with GraphIt. In Proceedings of the 18th ACM/IEEE International Sym-
posium on Code Generation and Optimization (CGO 2020). Association for Com-

puting Machinery, New York, NY, USA, 158–170. doi:10.1145/3368826.3377909

https://doi.org/10.1145/2688500.2688523
https://doi.org/10.1145/2688500.2688523
https://sites.cc.gatech.edu/dimacs10
https://doi.org/10.48550/arXiv.1508.03619
https://arxiv.org/abs/1508.03619
https://doi.org/10.1145/209937.209958
https://doi.org/10.1145/324133.324234
https://doi.org/10.1145/324133.324234
https://doi.org/10.1080/0022250X.2001.9990249
https://doi.org/10.1080/0022250X.2001.9990249
https://doi.org/10.1109/TPDS.2016.2634535
https://doi.org/10.1145/3711708.3723446
https://doi.org/10.1145/3711708.3723446
http://www.dis.uniroma1.it/~challenge9/
https://doi.org/10.1145/3087556.3087580
https://doi.org/10.1145/3087556.3087580
https://doi.org/10.1145/3434393
https://doi.org/10.1007/BF01386390
https://doi.org/10.1145/3409964.3461782
https://doi.org/10.1073/pnas.0407994102
https://doi.org/10.1109/HOTI.2009.9
https://doi.org/10.1145/1772690.1772751
https://doi.org/10.1007/11564126_17
https://doi.org/10.1016/S0196-6774(03)00076-2
https://doi.org/10.1016/S0196-6774(03)00076-2
https://doi.org/10.1145/2517349.2522739
https://doi.org/10.1145/1993498.1993501
https://doi.org/10.1145/3503221.3508432
https://arxiv.org/abs/2109.00657
https://doi.org/10.1145/2755573.2755616
https://doi.org/10.1137/0214061
https://doi.org/10.1145/79173.79181
https://doi.org/10.1145/3589259
https://doi.org/10.4230/LIPIcs.ESA.2021.81
https://doi.org/10.1145/2858788.2688547
https://doi.org/10.1145/2350190.2350193
https://doi.org/10.1287/trsc.32.1.65
https://doi.org/10.1145/3626183.3659962
https://doi.org/10.1145/3626183.3659962
https://doi.org/10.1145/3368826.3377909

	Abstract
	1 Problem Statement
	2 Related Work
	3 Proposed Approach
	4 Preliminary Results
	5 Conclusion and Future Work
	References

