
Towards Staleness-Tolerant Asynchronous
Data Processing

Jacob Garby

Supervised by Philippas Tsigas

Chalmers University of Technology

and University of Gothenburg

Gothenburg, Sweden

ACM Reference Format:
Jacob Garby. 2025. Towards Staleness-Tolerant Asynchronous Data

Processing. In Proceedings of 19th ACM International Conference on
Distributed and Event-based Systems (DEBS ’25). ACM, New York,

NY, USA, 4 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 Introduction
As data processing is becoming increasingly important for

both science and industry, the amount of data required to

be processed is also increasing. Common applications which

require processing large amounts of data include graph pro-

cessing and of course machine learning. Much larger datasets

as well as more advanced models result in the processing

taking ever longer to complete, and requiring more memory

to do so.

To combat this, parallel execution is a common optimisa-

tion. It is not trivial, however, to ensure that an algorithm

run in parallel will be sufficiently scalable to the available

number of cores. In an implementation in which all of the

threads (let’s assume one thread per core) process iterations

in lockstep (i.e. a synchronous implementation), the synchro-

nisation overheadmeans that the throughput (total iterations

per second) cannot scale even close to linearly with respect

to the number of threads.

To improve scalability, it can be preferable to devise asyn-
chronous implementations, the simplest case of which has

threads working entirely independently of one another, ap-

plying updates to a shared global state whenever they fin-

ish one iteration. This comes with its own issues, however:

asynchronous execution means that the results of individual

iterations may be computed based on an outdated view of

the global state. Such iterations are referred to as stale, and

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies

are not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. Copyrights

for components of this work owned by others than the author(s) must

be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee. Request permissions from permissions@acm.org.

DEBS ’25, June 10–13, 2025, Gothenburg, Sweden
© 2025 Copyright held by the owner/author(s). Publication rights licensed

to ACM.

ACM ISBN 978-1-4503-XXXX-X/2018/06

https://doi.org/10.1145/nnnnnnn.nnnnnnn

are both extremely common and unavoidable in this type of

asynchronous processing. Stale updates have a substantial

negative effect on the convergence rate of the algorithm,

since the statistical effectiveness of each update is reduced.

1.1 Problem Statement
The above discussion applies to any data processing algo-

rithm which consists of a sequence of iterations, each of

which uses the result of the previous iteration and produces

a result which is used for the next. We aim to address dif-

ferent types of iterative data processing systems, primarily

machine learning and graph processing.

Overall, we want to design a system, or a collection of sys-

tems, which are able to dynamically manage the trade-offs

between asynchronous and synchronous processing. This

involves the design of new thread scheduling and synchro-

nisation mechanisms, as well as strategies to choose and

evaluate hyperparameters.

Additionally, many such algorithms use a set of hyperpa-
rameters, and in order to improve their performance we aim

to consider how these hyperparameters may be adjusted at
runtime.

1.2 Questions
As mentioned earlier, many iterative data processing algo-

rithmsmay be implemented synchronously or asynchronously.

There are other possibilities, but most existing works fall into

one of those two categories. It is not uncommon to execute

asynchronously with some additional constraints on top, for

example dynamically adjusting the number of threads at

runtime[2], or rejecting updates above a certain staleness

[4]. It has also been proposed to dynamically switch between

fully synchronous and fully asynchronous [9]. However, not

much work exists studying execution modes somewhere in
the middle, which could potentially work better than either

extreme. Hence, we have our first research question:

?
Research Question A

What is the best way to synchronise and schedule

large numbers of threads in a way that is scalable

while either limiting the expected update staleness

or softening the impact of stale updates?

https://orcid.org/0009-0004-0981-5799
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn


DEBS ’25, June 10–13, 2025, Gothenburg, Sweden Jacob Garby

Of course, it is likely that there will be differences in the

best thread synchronisation strategy between different itera-

tive data processing tasks. It would be interesting to study

these differences and determine if the answer to Research
Question A is applicable to all, or many, different such tasks.

?
Research Question B

What are the significant differences and considera-

tions between different large-scale data processing

applications, such as machine learning and graph

processing?

As mentioned, we want to look into the effect of hyperpa-

rameters and determine in what ways adjustment thereof can

improve the performance of these algorithms. Hyperparame-
ter tuning is a well-studied field, but prior work deals with

finding values for hyperparameters that are then constant

over the entire execution. This is usually achieved via re-

peated restarting of the algorithm in question with different

parameters, potentially with some early-stopping mecha-

nism to abort hopeless runs. We have seen that many hyper-

parameters benefit from constant adjustment (e.g. batch size,

learning rate, number of threads), and suspect that this is

true of many others.

?
Research Question C

How can we adjust multiple hyperparameters such

a way that we produce executions during which

the hyperparameters vary? How can we deter-

mine whether a given execution state should ad-

vance with an adjusted set of hyperparameters, be

restarted with a new initial set, or continue with

no change?

2 Approach
2.1 Background
2.1.1 Stochastic Gradient Descent. Stochastic gradient
descent (SGD) is a widely used iterative algorithm for opti-

mising the parameters of some model to minimise a given

loss function by repeatedly computing the gradient with
respect to the current parameters. A simple sequential for-

mulation of this algorithm is as follows:

𝜃𝑖+1 := 𝜃𝑖 − 𝜂∇𝐿𝐵𝑖
(𝜃𝑖 ) (1)

Where 𝜃𝑖 is the parameter vector of the model following

iteration 𝑖; 𝐿𝐵𝑖
(𝜃𝑖 ) evaluates the loss of the model given pa-

rameters 𝜃𝑖 evaluated on aminibatch 𝐵𝑖 ; and 𝜂 is the learning

rate, controlling the impact of an individual gradient.

Each minibatch 𝐵𝑖 consists of a (typically but not always

fixed) number of training samples from the entire training

dataset.

2.1.2 Parallelising SGD. As mentioned before, a popular

approach to speeding up iterative algorithms such as SGD is

parallelism. We mainly consider data-parallelism, in which

each worker thread independently considers its own mini-

batch and computes a gradient. Once all of the gradients

have been computed (for synchronous execution), they can

simply be aggregated together (e.g. the average) and used to

update 𝜃 .

Parallel SGD has traditionally been, and still often is, per-

formed in this synchronous manner. This means that, before

aggregating the workers’ gradients and updating the model

parameters, all of the gradient computations must have com-

pleted. The primary advantage of this approach is that the

statistical semantics are identical to that of purely sequential

SGD (Equation 1) (which itself has been proven to converge

almost certainly to at least a local minimum, or a global

minimum given some fairly weak assumptions [5, 7, 10]).

Unfortunately, synchronous SGD suffers from scalabil-

ity issues for sufficiently high numbers of threads. Since all

threads must finish step 𝑖 before step 𝑖 + 1 can begin (which

necessarily relies on the resultant parameters from step 𝑖),

if some thread completes their iteration before another one

does then it can do nothing but sit and wait for the next step

to begin. Threads that take longer to finish their steps are

referred to as stragglers. The impact of stragglers on CPU

utilisation and hence on convergence rate is affected by the

distribution of step durations: if every step took precisely

the same amount of time, the overhead would be minimal,

since there would be practically no time spent waiting. This

is never the case in practice though; even for a system whose

threads are homogeneous in processing speed, small varia-

tions cause step durations to vary.

In order to better utilise the CPU, some more recent works

as well as machine learning software libraries make use of

asynchronous processing [1–3, 6, 8]. This relaxes the seman-

tics of the SGD update formula, 1; specifically, threads are

allowed to apply their computed gradients to the model in-

dependently (without averaging between threads) as soon as

they are finished, immediately starting a new step afterwards.

In this way, the gradient applied to 𝜃𝑖 in order to compute

𝜃𝑖+1 is no longer required to be the gradient of 𝜃𝑖 :

𝜃𝑖+1 := 𝜃𝑖 − 𝜂∇𝐿𝐵𝑖
(𝜃𝑖−𝜏𝑖 ) (2)

Here, 𝜏𝑖 refers to the staleness of step 𝑖 , i.e. the number

of versions the parameters 𝜃 have gone through since the

version that was used to compute this gradient was observed.

If 𝜏𝑖 is always 0, then we have an algorithm which is equiva-

lent to the sequential and synchronous formulations. When

𝜏𝑖 > 0, we are applying a gradient which is likely to not be as

relevant now as it would have been to the state of the model

𝜏𝑖 steps ago, and so the statistical efficiency of this step is

therefore worse.



Towards Staleness-Tolerant Asynchronous
Data Processing DEBS ’25, June 10–13, 2025, Gothenburg, Sweden

The benefit of asynchronous processing is that threads no

longer have to wait for stragglers, which is the main bottle-

neck in synchronous processing. As such, when considering

synchronous vs asynchronous execution, we are presented

with a tradeoff: we can easily achieve scalable throughput

(number of steps finished per second) at the expense of de-

graded statistical efficiency, and similarly we can achieve

a relatively large improvement in model accuracy for each

completed step at the expense of worsened scalability.

2.2 What We Have Done
Dynamic Parallelism. Recent work [2] has shown that

it’s not optimal, when executing SGD asynchronously, to

always use as many threads as possible. This is due to the

fact that the amount of noise introduced by stale updates is

correlated with the number of asynchronous threads. Exe-

cuting with higher than optimal parallelism leads to exces-

sive asynchrony induced noise, which not only removes the

throughput benefit of more threads, but can even lead to a

worse convergence rate than that achieved by fewer threads.

If the parallelism is lower than optimal, it means that we

could improve our throughput by some amount without hav-

ing the convergence rate decrease. Importantly, the optimal

number of threads varies over time.

The aforementioned work proposed a probing-based local

optimisation approach to follow the time-varying optimal

number of threads, but probing all values within a certain

range means that either a large proportion of the total exe-

cution is spent probing (hence less time spent at the actual

optimal value), or the probing range has to be small (meaning

that the optional value may drift too quickly for the probing

to catch up).

One alternative we considered is a ternary-search ap-

proach, which is a popular algorithm for finding the min-

imum of an unknown function by making a number of

"probes". In this case, the unknown function in question

is the mapping of parallelism to convergence rate. Theoret-

ically, ternary-search can give us better performance than

the existing window probing method, since the optimal can

be found in fewer steps, resulting in both a more accurate

approximation (due to less change in the model over the

probing period) and a higher proportion of the execution

being taken up by the execution phases.

An alternative method is to initialise some parameterised

function (say, a polynomial), and then – based on a number

of probes – adjust the parameters to make the function fit

the observed performance of different levels of parallelism.

A function can be selected such that its minimum can be

directly computed.

A challenge with these approaches is that the model loss

we measure during probing can be noisy, when measuring

loss based only on the minibatches that were used for train-

ing in that period. A workaround is to allow a more accurate

loss to be obtained when needed (after each probe) by com-

puting the accuracy across all of the test samples in the

dataset. Note that it’s okay to use the test data here, rather

than the training data, because these samples are not actually

being used to update the model.

We found that neither of these approaches provided a

significant improvement over prior work, though, most likely

due to the aforementioned measurement inaccuracy as well

as the limited gains we can expect even given an absolutely

optimal sequence of parallelism.

Interval-Asynchrony. In an attempt to take the best of

both worlds of asynchronous and synchronous execution

(namely high throughput and low staleness, respectively),

we’ve developed a novel execution strategy for parallel SGD,

which we refer to as Interval-Asynchrony.
Using this method, the whole execution is logically divided

into a number of asynchronous periods, during which threads

are free to begin SGD steps in an asynchronous manner.

After a set number of steps have been accepted (both begun

and ended) within a certain period, all the threads are then

forced to synchronise before the next period can begin. We

refer to the period length as 𝑦.

The rationale behind this approach is that we are still able

to achieve a high throughput due to a good proportion of the

total execution consisting of asynchronous execution. The

advantage is that we’re able to both bound the maximum

staleness (𝜏 <𝜖 𝑦) and shift the distribution of staleness,

as shown in Figure 1. This plot shows several interesting

trends: most importantly, we can see that by adjusting 𝑦 we

can shift the expected staleness smoothly between that of a

synchronous execution (𝜏 = 0) to an asynchronous execution,

in which 𝜏 follows a Gaussian distribution with 𝜇 < 𝑚. As

we shift away from asynchronous, by reducing 𝑦, the left tail

of this distribution grows more significant, as we get more

and more low-staleness steps for each asynchronous period.

This semi-synchronous execution is performant on its

own, using a static value for𝑦, but delivers even better results

when 𝑦 varies over time. This is similar to the time-varying

optimal parallelism mentioned earlier. We proposed two

different methods for adjusting 𝑦: one in which it decays

over time at a fixed rate, and one which uses a local probing

technique.

We evaluated this algorithm against several baselines, in-

cluding the aforementioned dynamic parallelism approach,

on two popular image recognition datasets (CIFAR10 and

CIFAR100). A summary of our results is that we cut the

time to train to a given accuracy by 32%, and demonstrated

significantly improved scalability up to 128 threads.

Our work on Interval-Asynchrony has been accepted for

publication at Euro-Par 2025.



DEBS ’25, June 10–13, 2025, Gothenburg, Sweden Jacob Garby

0 100 200
0

2

4

0 100 200 0 100 200 0 100 200 0 100 200 0 100 200 0 100 200

0 100 200
0

2

4

0 100 200 0 100 200 0 100 200 0 100 200 0 100 200 0 100 200

Pe
rc
en

ta
ge

y=64 y=128 y=256 y=512 y=1024 y=4096 Async

Figure 1. 𝜏-distribution with varying semisync period 𝑦. The top row uses 128 threads, and the bottom uses 256.

2.3 Improvements & Future Work
Although we propose an effective window-probing approach

for automatically controlling the interval size of Interval-
Asynchronous SGD, it is often sensitive to the initial size, 𝑦0.

Further work in this area is needed in order to design a more

effective automatic controller for this parameter, for example

incorporating a heuristic method to determine a suitable 𝑦0.

More generally, as mentioned in Research QuestionC, there
are a number of other parameters for which online control

is conceivably beneficial to training performance. These are,

at least: batch size, learning rate, thread count, and asyn-

chronous interval size. An interesting piece of further work

would produce a holistic controller for such parameters.

2.4 Conclusion
This project aims to produce algorithms and frameworks

which can improve the speed of various data processing

algorithms, with a focus on machine learning and graph al-

gorithms. The central theme for such optimisations is trading

strict semantics in thread synchronisation and data struc-

tures for improved throughput. This trade-off introduces

problems with reduced accuracy, which we must find ways

to mitigate.

References
[1] Karl Backstrom, Marina Papatriantafilou, and Philippas Tsigas.

MindTheStep-AsyncPSGD: Adaptive asynchronous parallel stochastic

gradient descent. In 2019 IEEE International Conference on Big Data
(Big Data), pages 16–25. IEEE, 2019.

[2] Karl Bäckström. Adaptiveness, asynchrony, and resource efficiency in

parallel stochastic gradient descent. ISBN: 9789179058555.

[3] Karl Bäckström, Marina Papatriantafilou, and Philippas Tsigas.

ASAP.SGD: Instance-based adaptiveness to staleness in asynchronous

SGD. In Proceedings of the 39th International Conference on Machine
Learning, pages 1261–1276. PMLR, 2022. ISSN: 2640-3498.

[4] Qirong Ho, James Cipar, Henggang Cui, Seunghak Lee, Jin Kyu Kim,

Phillip B. Gibbons, GarthAGibson, GregGanger, and Eric P Xing. More

effective distributed ml via a stale synchronous parallel parameter

server. In C.J. Burges, L. Bottou, M. Welling, Z. Ghahramani, and

K.Q. Weinberger, editors, Advances in Neural Information Processing
Systems, volume 26. Curran Associates, Inc., 2013.

[5] Ahmed Khaled and Peter Richtárik. Better theory for SGD in the

nonconvex world, 2020.

[6] Feng Niu, Benjamin Recht, Christopher Re, and Stephen J. Wright.

HOGWILD!: A lock-free approach to parallelizing stochastic gradient

descent.

[7] Herbert Robbins and Sutton Monro. A stochastic approximation

method. 22(3):400–407, 1951.

[8] The PyTorch Foundation. Multiprocessing best practices – py-

torch 2.6 documentation. https://pytorch.org/docs/stable/notes/
multiprocessing.html#asynchronous-multiprocess-training-e-g-
hogwild. [Online; Accessed: 12-02-2025].

[9] Chenning Xie, Rong Chen, HaibingGuan, Binyu Zang, andHaibo Chen.

Sync or async: time to fuse for distributed graph-parallel computation.

SIGPLAN Not., 50(8):194–204, jan 2015.

[10] Yi Zhou, Junjie Yang, Huishuai Zhang, Yingbin Liang, and Vahid

Tarokh. SGD converges to global minimum in deep learning via

star-convex path, 2019.

https://pytorch.org/docs/stable/notes/multiprocessing.html#asynchronous-multiprocess-training-e-g-hogwild
https://pytorch.org/docs/stable/notes/multiprocessing.html#asynchronous-multiprocess-training-e-g-hogwild
https://pytorch.org/docs/stable/notes/multiprocessing.html#asynchronous-multiprocess-training-e-g-hogwild

	1 Introduction
	1.1 Problem Statement
	1.2 Questions

	2 Approach
	2.1 Background
	2.2 What We Have Done
	2.3 Improvements & Future Work
	2.4 Conclusion

	References

